

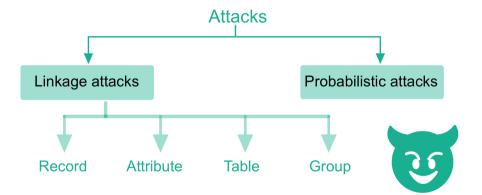
- 1. Motivation
- 2. Privacy Notions in Trajectory Data
- 3. Mechanism Achieving Differential Privacy
- 4. Mechanisms Analysis
- 5. Conclusions and Future Research

Motivation

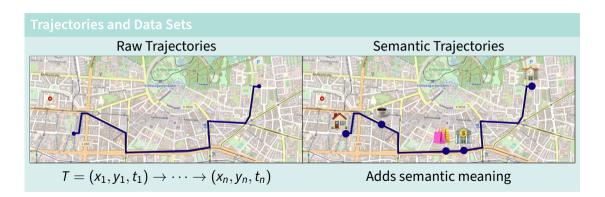

Motivation Why do we Need to Anonymize Trajectory Data?

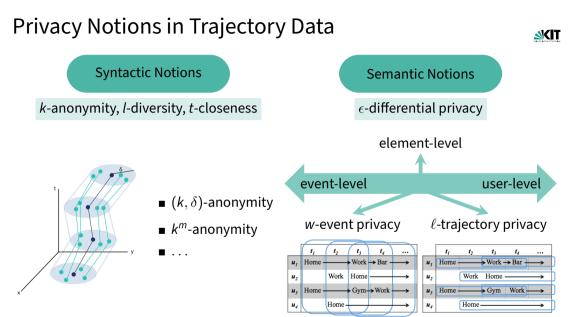
Motivation Data Privacy

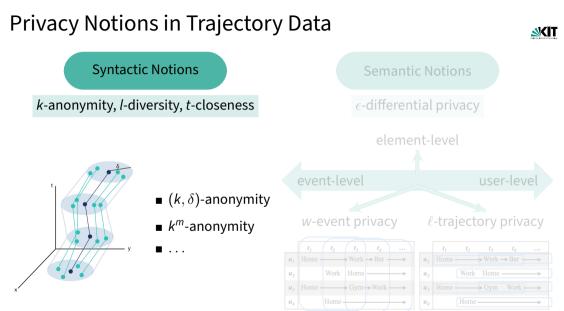
Motivation



Motivation Why do we Need to Anonymize Trajectory Data?





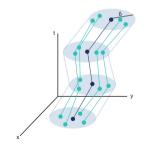

Model Modeling Trajectories

Privacy Notions in Trajectory Data

Privacy Notions in Trajectory Data *k*-anonymity, *l*-diversity and *t*-closeness

Privacy Notions in Trajectory Data *k*-anonymity, *l*-diversity and *t*-closeness

Privacy notion	RL	AL	TL	GL	PA
<i>k</i> -anonymity	\checkmark				
<i>l</i> -diversity	\checkmark	\checkmark			
<i>t</i> -closeness	\checkmark	\checkmark	\checkmark		\checkmark


Table 1: RL = Record linkage, AL = Attribute linkage, TL = Table linkage, GL = Group linkage, PA = Probabilistic attack

Privacy Notions in Trajectory Data

Syntactic Notions

k-anonymity, *l*-diversity, *t*-closeness

- (k, δ) -anonymity
- *k^m*-anonymity

■ ...

Privacy Notions in Trajectory Data Syntactic Techniques

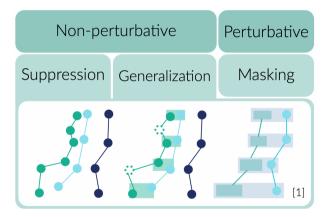


Figure 1: The main three techniques in syntactic anonymization

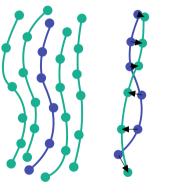
Privacy Notions in Trajectory Data Syntactic Techniques Deficiencies: Suppression

- Drastic reduction of database
- Dangerous when used by itself

Figure 2: Suppression

Privacy Notions in Trajectory Data Syntactic Techniques Deficiencies: Generalization

- Not generalizing all dimensions
- Inappropriate regions definition
- Background knowledge attacks
- Drastic reduction of precision
- Dangerous when used by itself



Privacy Notions in Trajectory Data Syntactic Techniques Deficiencies: Masking

Unpredictable biases

 Impossible trajectories

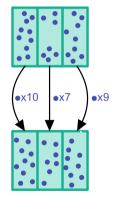
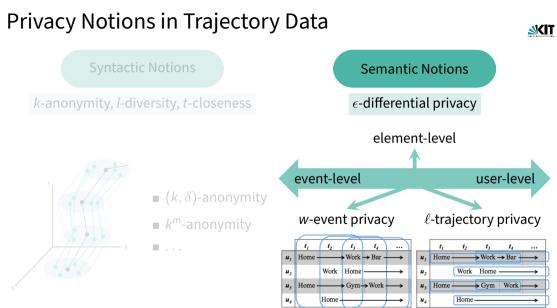



Figure 4: Dummy generation

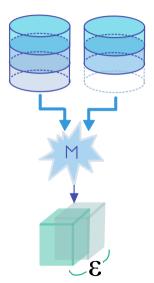
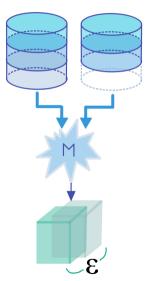

Figure 5: Noise addition

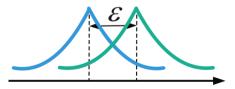
Figure 6: Condensation

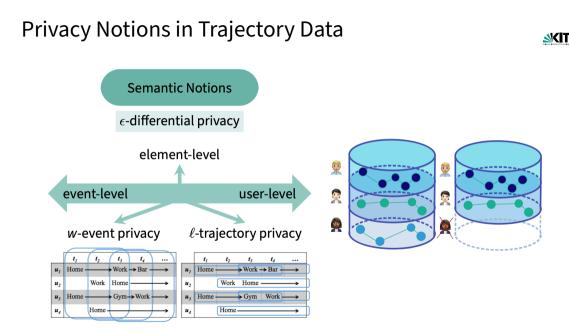
Privacy Notions in Trajectory Data


ϵ -Differential Privacy

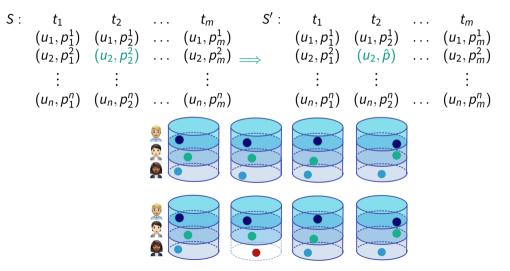
A randomized algorithm *M* is said to be ϵ -differentially private if for all neighboring databases *D*, *D'* and all $S \subseteq Range(M)$,

 $\mathbb{P}{M(D) \in S} \le e^{\epsilon} \mathbb{P}{M(D') \in S}.$


Differential Privacy



Privacy Loss (by observing r)

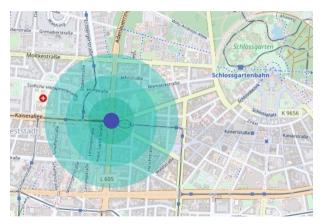

$$\mathcal{L}_{M(D)||M(D')}^{r} = ln\left(\frac{\mathbb{P}(M(D) = r)}{\mathbb{P}(M(D') = r)}\right)$$

Privacy Notions in Trajectory Data Event-level

Privacy Notions in Trajectory Data Event-level

Event-neighborhood

Two finite streams *S* and *S'* of symbols drawn from the discrete universe \mathcal{X} are called *event-neighbors*, if and only if there exists $a, b \in \mathcal{X}$ such that if we change the instance of a in *S* to *b* we get *S'*.


Privacy Notions in Trajectory Data Event-level

Privacy Notions in Trajectory Data Location-Based Notions

Figure 7: Geo-indistinguishability: $\mathbb{P}{M(x) \in S} \le e^{\epsilon d(x,x')} \cdot \mathbb{P}{M(x') \in S}$

23

Privacy Notions in Trajectory Data Location-Based Notions

Unique in the Crowd: The privacy bounds of human mobility

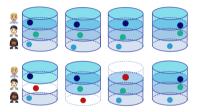
Yess Alasandra de Histoper 1, Céser A, Hidolgo 11, Hichel Varlayaer & Vincent D. Biosdal? 1

Of "Massa Aussitriumine of Fachnises, Medic Lills 30 Anas Search Carolingia, MA 3021H GA, Manurari conhispan de Lasses, harbe la Historia and Commission Reference and Applicational Analysis of the Search & B 1204 Locandorfisme, Balgico, "Massari Donato", Caro In A May, Holmannica, 1974 Terra Carolingia, MA 2018, Vol. - Nature & Emerica Carolingia In Markins, 1980 Terra Carolingia, MA 2018, Vol. - Nature & Emerica Carolingia In Markins, Inc. 11 & AMA, Holmannic, Dial Carolingia, MA 2018, Vol. - Nature & Emerica Carolingia In Markins, 1980 Terra Carolingia, MA 2018, Vol. - Nature & Emerica Carolingia In Markins, 1980 Terra Carolingia, MA 2018, Vol. - Nature & Emerica Carolingia In Markins, 1980 Terra Carolingia, MA 2018, Vol. - Nature & Emerica Carolina Carolingia In Markins, 1980 Terra Carolingia, MA 2018, Vol. - Nature & Emerica Carolina Carolina Carolina, 1997 Terra Carolingia, MA 2018, Vol. - Nature & Emerica Carolina Carolina, 1997 Terra Carolingia, MA 2018, Vol. - Nature & Emerica Carolina Carolina Carolina, 1997 Terra Carolingia, Vol. 2018, Vol. - Nature & Emerica Carolina Carolina, 1997 Terra Carolingia, Vol. 2018, Vol. - Nature & Emerica Carolina, 1997 Terra Carolingia, Vol. 2018, Vol. - Nature & Emerica Carolina, 1997 Terra Carolingia, Vol. 2018, Vol. - Nature & Emerica Carolina, 1997 Terra Carolingia, Vol. 2018, Vol. - Nature & Emerica Carolina, 1997 Terra Carolingia, 1997 Terra Carolingia,

Access of the second se

Detections in the degree instance of the green is above, strategy, to fast its additional register and strategy of the degree instance in the green is additional register and the degree is additional. The models the degree proves is additional register and the degree is additional. The models register is additional register and the degree is additional register and the degree is additional. The models register is additional register additional register and the degree is additional. The models register is additional register additional re

Molecular information to the index of the index of the Answer and Answer Answer


Twitch the figure, subdity trace were only resulting to making phone, are true. An advance of examplesion and there masses a data action to be made the best-phone within the resulting phone. The sub-trace data and the phone structure of the sub-trace data and the sub-trace data and the sub-trace data and the large data and the sub-trace data and the sub-trace data and the sub-trace data and the sub-trace and the phone sub-trace data and the sub-trace data

It imply suscipational dataset does not constain same Jones address phone number or either devices identifies, If individually patients are unique enough, could information can be used to lick the data back to use if indial. For transmission, to come study, a method database was reconstrainly conduced with a reformation beto enough and the study of the s

SCIENTIC REPORT [3:1874 [DOI:18.508/sep81879

Privacy Notions in Trajectory Data *w*-event privacy

	t_1	t_2	t_3	t_4	t_5	t_6	t_7
u_1	$home_1$	$home_1$	work	work	gym	$home_1$	$home_1$
u_2	casino	casino	$work_2$	casino	casino	casino	casino
u_3	$home_3$	$work_3$	$work_3$	$work_3$	$work_3$	$home_3$	home ₃

w-event neighborhood

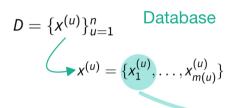
Let $w \in \mathbb{Z}^+$. $D_t = \{S_1, \ldots, S_t\}$ and $D'_t = \{S'_1, \ldots, S'_t\}$ are *w*-neighboring, if, for all $i \le t, S_i$ and S'_i are either equal or we obtain one from the other by changing an entry of S_i , and all i, j corresponding to the latter case verify that |i - j| < w.

Privacy Notions in Trajectory Data *w*-event privacy

	user	t_1	t_2	t_3	t_4	t_5	t_6	t_7
-	u_1	home	home	work	work	gym	home	home
	u_2	casino 🌆	casino 🌆	work	work	work	casino 🌆	casino 🌆
	<i>u</i> ₃	home	work	work	work	home	home	home

user	<i>t</i> ₁	t ₂	t ₃	t ₄	t ₅
<i>u</i> ₁	home				bar
<i>u</i> ₂		bar			home
U ₃	home	office	gym		home

Privacy Notions in Trajectory Data *ℓ*-trajectory privacy


	user	time	loc
D_1	u_1	t_1	home
ν_1	<i>u</i> ₃	t_1	home
D.	<i>u</i> ₂	<i>t</i> ₂	bar
<i>D</i> ₂	U ₃	<i>t</i> ₂	office
D ₃	U ₃	<i>t</i> ₃	gym
	u_1	<i>t</i> ₅	bar
D ₅	<i>u</i> ₂	<i>t</i> ₅	home
	U ₃	<i>t</i> ₅	home

t_1	t ₂	t ₃	t4	t_5
home				bar
	bar			home
home	office	gym		home
		bar	bar	home bar

user	t_1	t ₂	t ₃	t4	t ₅
u_1	home				bar
<i>u</i> ₂		bar			home
U ₃	home	office	gym		home
1-trajectory			3-traje	ectory	

Privacy Notions in Trajectory Data Element-level

Clusters \mathcal{X} Universe $\rightarrow \{C_1, \ldots, C_k\}$

Distance between users

$$d_{user}(x, x') := \sum_{k=1}^{K} \mathbf{1}_{\{\{x_i: x_i \in c_k\} \neq \{x'_i: x'_i \in c_k\}\}}$$

Privacy Notions in Trajectory Data Element-level

user	t_1	t_2	t_3	$x \in C_1$	$x \in C_2$	
u_1	café			{café}	Ø	$d(u_1,u_2)=1$
u_2	café	café		{café, café}	Ø	
u_3	café	café	café	{café, café, café}	Ø	$d(u_1,u_3)=1$
u_4	café	café	home	{café, café}	{home}	$d(u_1, u_4) = 2$
u_5	café	home		{café}	{home}	$ d(u_4, u_5) = 1 $
						$u(u_4, u_5) - 1$

Privacy Notions in Trajectory data

Type of privacy	Difference between neighboring databases			
User-level	A user's whole trajectory			
Event-level	A spatio-temporal point visited by a user (an event)			
<i>w</i> -event	A window of events over <i>w</i> consecutive timesteps			
ℓ-trajectory	A sequence of ℓ consecutive spatio-temporal points from a			
2-trajectory	single user			
Element-level	A user's set of points belonging to the same unique cluster(*)			

 Table 2: Granularity notions and their concept of neighborhood.(*)unbounded notion