

Mechanism Achieving Differential Privacy

Mechanism Achieving Differential Privacy

Figure 8: Static context

Figure 9: Dynamic or streaming

Algorithms Achieving Differential Privacy

ℓ_1 -sensitivity

The ℓ_1 -sensitivity of a function $f \colon \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^n$ is:

$$\Delta(f) := \max_{\|D,D'\|_1=1} \|f(D) - f(D')\|_1$$

Algorithms Achieving Differential Privacy Laplace Mechanism

Laplace Mechanism

Given any function $f : \mathbb{N}^{|\mathcal{X}|} \to \mathbb{R}^n$ the Laplace mechanism is defined as:

 $ML(D, f(\cdot), \epsilon) = f(D) + (Y_1, \ldots, Y_n)$

where Y_i are i.i.d. random variables drawn from $Lap(\frac{\Delta f}{\epsilon})$.

Algorithms Achieving Differential Privacy Exponential Mechanism

 $M_E(D, u, \mathcal{R})$ selects and outputs an element $r \in \mathcal{R}$ with probability proportional to $exp(\frac{\epsilon u(D,r)}{2\Delta(u)})$. 2u

Mechanism Achieving Differential Privacy Static Context

Mechanism Achieving Differential Privacy Static Context

SKIT

Mechanism Achieving Differential Privacy

Discrete-time Markov process of order *l*

Given a sequence of random variables X_1, X_2, X_3, \ldots . We say that they follow a Markov process of order *l* iff probability of moving to the next state depends only on the *l* previous states :

$$\Pr(X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \Pr(X_{n+1} = x \mid X_{n-l} = x_{n-l}, \dots, X_n = x_n)$$

Mechanisms	<i>n</i> -grams	DPT	DP-STAR	
Time variable	×	×	×	
Prefix tree	✓	\checkmark	×	
Neighboring databases	$D_1=D_2\cup\{T\}$	$D_1 = D_2 \cup \{PT\}$	$D_1=D_2\cup\{T\}$	
Main mechanism	Laplacian mechanism	Laplacian mechanism	Laplacian and exponential mechanism	
Sensitivity bound	<i>l_{max}</i> truncation	Normalization by #transitions in <i>PT</i>	Normalization by <i>T</i>	
Markov process	order <i>n</i> – 1	order <i>l</i> < <i>k</i>	order 1	

Mechanisms	<i>n</i> -grams	DPT	DP-STAR
Time variable	×	×	×
Prefix tree	✓	\checkmark	×
Neighboring databases	$D_1=D_2\cup\{T\}$	$D_1 = D_2 \cup \{PT\}$	$D_1=D_2\cup\{T\}$
Main mechanism	Laplacian mechanism	Laplacian mechanism	Laplacian and exponential mechanism
Sensitivity bound	l _{max} truncation	Normalization by #transitions in <i>PT</i>	Normalization by <i>T</i>
Markov process	order <i>n</i> – 1	order <i>l</i> < <i>k</i>	order 1

 $T = \langle l_1, \ldots, l_n \rangle$ where each l_i is a location

<u>ski</u>

Mechanisms Analysis

Mechanisms Analysis

Privacy Enhancing Mechanisms

Mechanisms Analysis Privacy Analysis

Privacy Loss (by observing r)

$$\mathcal{L}_{\mathcal{M}(D)||\mathcal{M}(D')}^{r} = \ln\left(\frac{\mathbb{P}(\mathcal{M}(D) = r)}{\mathbb{P}(\mathcal{M}(D') = r)}\right) \leq \epsilon$$

Mechanisms Analysis Limitations on Differential Privacy

Bayesian inference

Mechanisms Analysis Limitations on Differential Privacy

•
$$\mathfrak{P}(r|_{X_{1}=X_{1}}) = \sum_{\substack{q \in \mathfrak{M}, l \in \\ q \in \mathfrak{M}, q \in \\ q \in$$

Mechanisms Analysis Limitations on Differential Privacy

Mechanisms Analysis Classification of Utility Metrics

Utility metrics

Total preservation of data

Location preservation, number of suppressed points, ...

Close preservation of data

Use of similarity measures, preservation range query, discernability...

Preservation of semantic information

- Most visited places, frequent sequential patterns, trajectory length preservation...
- Query error distortion function:

$$\operatorname{error}(q) = rac{|q(D) - q(D')|}{\max\{q(D), b\}}.$$

Assurance of realism

Reachability, geo-spatial consistency...

Mechanisms Analysis Classification of Utility Metrics

Utility metrics

Total preservation of data

Location preservation, number of suppressed points, ...

Close preservation of data

Use of similarity measures, preservation range query, discernability...

Preservation of semantic information

- Most visited places, frequent sequential patterns, trajectory length preservation...
- Query error distortion function:

$$\operatorname{error}(q) = rac{|q(D) - q(D')|}{\max\{q(D), b\}}.$$

Assurance of realism

Reachability, geo-spatial consistency...

Mechanisms Analysis

Similarity Measures

	Euclidean distance	Hausdorff & Fréchet	DTW	TWED	LCSS	EDR
Can compare different lengths	×	1	1	1	1	1
Considers time & allows for local time shifting	×	×	1	1	1	1
Is robust to noise	×	×	×	×	1	1
Is a metric	✓	1	×	1	X	×

 Table 3: DTW: Dynamic time warping, TWED: Time warping edit distance, LCSS: Longest common subsequence, EDR: Edit distance on real sequences

Mechanisms Analysis

Euclidean distance

	Euclidean distance
Can compare different lengths	×
Considers time & allows for local time shifting	×
Is robust to noise	×
Is a metric	✓

$$\operatorname{Eu}(T,T') = \sqrt{\sum_{i=1}^n d((x_i,x_i'),(y_i,y_i'))^2}$$

Mechanisms Analysis Hausdorff & Fréchet distances

	Hausdorff & Fréchet
Can compare different lengths	1
Considers time & allows for local time shifting	×
Is robust to noise	×
Is a metric	1

Mechanisms Analysis Dynamic time warping (DTW) & variations

	DTW	TWED
Can compare different lengths	1	1
Considers time & allows for local time shifting	1	1
Is robust to noise	X	×
ls a metric	X	1

TWED: Time warping edit distance

DTW

Mechanisms Analysis Longest common subsequence (LCSS)

	LCSS
Can compare different lengths	1
Considers time & allows for local time shifting	1
Is robust to noise	1
Is a metric	×

Mechanisms Analysis Edit distance on real sequences (EDR)

	EDR
Can compare different lengths	1
Considers time & allows for local time shifting	1
Is robust to noise	1
Is a metric	×

Mechanisms Analysis

Similarity Measures Divisions

Dimension-wise

	Spatial	Temporal	Categorical	
DTW, LCSS, EDR	Euclidean, Hausdorff, Fréchet distances	Global Time difference	Hamming distance- like function	
	Euclidean distance,	Time	Hierarchical tree	
Distance functions	formula, road maps	difference	5 2 6.5	Level 1
				10 — — Level 3

Mechanisms Analysis Limitations on Utility

Conclusions and Future Research

Conclusions and Future Research

∢K⊓