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Figure 8: Static context

Figure 9: Dynamic or streaming
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Algorithms Achieving Differential Privacy

ℓ1-sensitivity

The ℓ1-sensitivity of a function f : N|X | → Rn is:

∆(f) := max
∥D,D′∥1=1

∥f(D)− f(D′)∥1
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Algorithms Achieving Differential Privacy
Laplace Mechanism

Laplace Mechanism

Given any function f : N|X | → Rn the Laplace mechanism is defined as:

ML(D, f(·), ϵ) = f(D) + (Y1, . . . , Yn)

where Yi are i.i.d. random variables drawn from Lap(∆f
ϵ ).
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Algorithms Achieving Differential Privacy
Exponential Mechanism
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Mechanism Achieving Differential Privacy
Static Context

Noisy counts Clustering Perturbing
semantic trajectories
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Mechanism Achieving Differential Privacy

Discrete-time Markov process of order l

Given a sequence of random variables X1, X2, X3, . . . . We say that they follow a Markov
process of order l iff probability of moving to the next state depends only on the l previous
states :

Pr(Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = x | Xn−l = xn−l, . . . , Xn = xn)
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Mechanism Achieving Differential Privacy
Synthetic Data

Mechanisms n-grams DPT DP-STAR

Time variable ✗ ✗ ✗

Prefix tree ✓ ✓ ✗

Neighboring
databases D1 = D2 ∪ {T} D1 = D2 ∪ {PT} D1 = D2 ∪ {T}

Main
mechanism

Laplacian
mechanism

Laplacian
mechanism

Laplacian and
exponential
mechanism

Sensitivity
bound lmax truncation Normalization by

#transitions in PT
Normalization by

|T|
Markov process order n − 1 order l < k order 1 38
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Mechanism Achieving Differential Privacy
Synthetic Data
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Mechanism Achieving Differential Privacy
Synthetic Data

T = ⟨l1, . . . , ln⟩ where each li is a location

TIME?
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Privacy Enhancing Mechanisms

Privacy Utility

Notions: DP Utility Metrics

Applicability
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Mechanisms Analysis
Privacy Analysis

Privacy Loss (by observing r)

Lr
M(D)||M(D′) = ln

(
P(M(D) = r)
P(M(D′) = r)

)
≤ ϵ

44



Mechanisms Analysis
Limitations on Differential Privacy
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Mechanisms Analysis
Classification of Utility Metrics

Utility metrics

▶ Total preservation of data
▶ Location preservation, number of suppressed points, ...

▶ Close preservation of data
▶ Use of similarity measures, preservation range query, discernability...

▶ Preservation of semantic information
▶ Most visited places, frequent sequential patterns, trajectory length preservation...
▶ Query error distortion function:

error(q) =
|q(D)− q(D′)|
max{q(D), b}

.

▶ Assurance of realism
▶ Reachability, geo-spatial consistency... 48
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Mechanisms Analysis
Similarity Measures

Euclidean
distance

Hausdorff
& Fréchet DTW TWED LCSS EDR

Can compare
different lengths ✗ ✓ ✓ ✓ ✓ ✓

Considers time &
allows for local time

shifting
✗ ✗ ✓ ✓ ✓ ✓

Is robust to noise ✗ ✗ ✗ ✗ ✓ ✓

Is a metric ✓ ✓ ✗ ✓ ✗ ✗

Table 3: DTW: Dynamic time warping, TWED: Time warping edit distance, LCSS: Longest common
subsequence, EDR: Edit distance on real sequences 50



Mechanisms Analysis
Euclidean distance

Euclidean
distance

Can compare
different lengths ✗

Considers time &
allows for local time

shifting
✗

Is robust to noise ✗

Is a metric ✓

Eu(T, T′) =

√√√√ n∑
i=1

d((xi, x′i ), (yi, y′i ))2
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Mechanisms Analysis
Hausdorff & Fréchet distances

Hausdorff
& Fréchet

Can compare
different lengths ✓

Considers time &
allows for local time

shifting
✗

Is robust to noise ✗

Is a metric ✓
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Mechanisms Analysis
Dynamic time warping (DTW) & variations

DTW TWED

Can compare
different lengths ✓ ✓

Considers time &
allows for local time

shifting
✓ ✓

Is robust to noise ✗ ✗

Is a metric ✗ ✓

TWED: Time warping edit distance
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Mechanisms Analysis
Longest common subsequence (LCSS)

LCSS

Can compare
different lengths ✓

Considers time &
allows for local time

shifting
✓

Is robust to noise ✓

Is a metric ✗
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Mechanisms Analysis
Edit distance on real sequences (EDR)

EDR

Can compare
different lengths ✓

Considers time &
allows for local time

shifting
✓

Is robust to noise ✓

Is a metric ✗
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Mechanisms Analysis
Similarity Measures Divisions

Spatial
Euclidean,
Hausdorff,

Fréchet
distances...

Euclidean
distance,

Haversine
formula,

road maps...

Temporal

Global
Time

difference

Time
difference

Categorical
Hamming
distance-

like
function...

Hierarchical
tree...

Dimension-wise

Po
in

t-w
is

e

DTW, LCSS, EDR...

Distance functions
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Mechanisms Analysis
Limitations on Utility
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