
ProMACs: Progressive and Resynchronizing MACs for
Continuous Efficient Authentication of Message Streams
Frederik Armknecht

∗

University of Mannheim

Germany

armknecht@uni-mannheim.de

Paul Walther
∗

TU Dresden

Germany

paul.walther@tu-dresden.de

Gene Tsudik

UC Irvine

USA

gts@ics.uci.edu

Martin Beck

TU Dresden

Germany

martin.beck1@tu-dresden.de

Thorsten Strufe

KIT and CeTI TU Dresden

Germany

strufe@kit.edu

ABSTRACT
Efficiently integrity verification of received data requires Message

Authentication Code (MAC) tags. However, while security calls for

rather long tags, in many scenarios this contradicts other require-

ments. Examples are strict delay requirements (e.g., robot or drone

control) or resource-scarce settings (e.g., LoRaWAN networks with

limited battery capacity).

Prior techniques suggested truncation of MAC tags, thus trading

off linear performance gain for exponential security loss. To achieve

security of full-length MACs with short(er) tags, we introduce Pro-

gressive MACs (ProMACs) – a scheme that uses internal state to

gradually increase security upon reception of subsequent messages.

We provide a formal framework and propose a provably secure,

generic construction called Whips. We evaluate applicability of

ProMACs in several realistic scenarios and demonstrate example

settings where ProMACs can be used as a drop-in replacement for

traditional MACs.

CCS CONCEPTS
• Security and privacy → Hash functions and message au-
thentication codes; Formal security models; Domain-specific
security and privacy architectures; • Theory of computation→
Cryptographic primitives.

KEYWORDS
Message Authentication Codes, Stream Authentication, Progressing

Security, Sensor Networks, Drone Control, Robot Control

ACM Reference Format:
Frederik Armknecht, Paul Walther, Gene Tsudik, Martin Beck, and Thorsten

Strufe. 2020. ProMACs: Progressive and Resynchronizing MACs for Con-

tinuous Efficient Authentication of Message Streams. In Proceedings of the

∗
Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13,2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3423349

2020 ACM SIGSAC Conference on Computer andCommunications Security
(CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3372297.3423349

1 INTRODUCTION
Verifying authenticity and integrity of received data (e.g., a packet

stream) is usually achieved by appending a Message Authentication

Code (MAC) tag to each packet. Increasing the tag length linearly

yields exponential security gains (up to the key size). The use of

long(er) per packet MAC tags is typically justified by high (and

growing) network speeds and large packet sizes in many application

domains.

However, some recent and emerging communication settings

impose ultra-low latency requirements and involve low-power de-

vices, which makes the bandwidth overhead of long MAC tags to

be too high. Examples include: the Internet of Things (IoT) with

small battery-operated devices, vehicular communication, as well

as robot and drone control. Communication in these examples is

characterized by very high frequency streams of very small control

packets that are subject to very strict timing constraints. Similar re-

quirements occur in distributed control loops [52]. Thus far, the fact

that communication usually comprises long sequences of tightly

spaced packets has not been exploited to improve security.

Drone control [3] requires wireless transmission of thousands

of small (a few bytes to tens of bytes in size) packets, fully utilizing

the available bandwidth of the wireless channel [22]. Given their

control of physical hardware, all commands must be authenticated

individually in their specific context. As context and criticality of

control messages varies over the course of operation, the required

security level changes accordingly. In contrast, LoRaWAN devices

in the IoT domain are optimized to transmit as few bytes, as rarely

as possible due to energy limitations [2]. All unnecessary data

and re-transmissions cause battery drain and diminish the overall

utility and longevity of the system; in particular, this means that

implicit resynchronization in cases of packet loss is preferable to

explicit retransmissions. Even the cost of memory and the resulting

storage limitations can limit the applicability of traditional MACs,

as in the case of the Memory Encryption Engine in Intel SGX [25].

Various other domains share these requirements, such as in-car

communication [50], haptic feedback controls [34], radio networks

signalling [40], and even System/Network-on-Chip communication

[39].

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

211

https://doi.org/10.1145/3372297.3423349
https://doi.org/10.1145/3372297.3423349
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3372297.3423349&domain=pdf&date_stamp=2020-11-02

In summary, there are many practical use-cases that require

authentication of message streams under the following conditions:

(1) Direct authentication of each packet immediately upon (or

at most shortly after) its reception

(2) Tag sizes should beminimized to reduce bandwidth overhead

(3) High security guarantees, i.e. comparable to traditional MAC

schemes

(4) Ability to resynchronize without explicit protocol communi-

cation

Figure 1: Achieved security level of progressive MACs (bot-
tom), compared to simple truncation (top), with identical
communication cost – tags truncated to 64 bits, internal
MAC/key of 256-bit length each.

As discussed in Section 2 below, no prior work satisfies all of

these conditions. To fill the gap, we propose the concept of Progres-

sive MACs (ProMACs). In a nutshell, ProMACs extend (possibly

truncated) MACs with a modest amount of dynamic internal state

on the receiver side. This allows for implicit verification of older

packets as more recent tags are received and results in progres-

sively increasing level of security. As shown at the bottom of Fig.

1, each packet reception yields immediate integrity verification

with the security level of 64 bits, which improves upon reception

of subsequent packets. Individual tag sizes can still be chosen to

be small enough to reduce communication and verification costs,

or large enough for security critical packets. Moreover, internal

state computation allows implicit resynchronisation without extra

communication overhead.

The contributions of this paper are:

Formal Framework: We present a formal definition of ProMACs

which formalizes stream integrity schemes that achieve in-

creased security through progressive verification of packet

streams. Moreover, we show that ProMACs extends the no-

tion of standard MACs, i.e., any MAC scheme can be seen as

an instantiation of ProMACs.

Generic Construction: We describe a generic construction of

ProMACs based on pseudorandom functions (PRFs) and

prove its security.

Experiments: Prototype implementations demonstrate the sub-

stantial speed-up and cost reduction in realistic settings.

The rest of the paper is organized as follows: Section 2 motivates

aforementioned requirements and argues that prior schemes are

unable to satisfy all of them. Next, Section 3 describes some neces-

sary background concepts. Then, Section 4 introduces ProMACs

in an intuitive manner, followed by a formal definition and secu-

rity arguments, and concludes with the discsussion of ProMACs’

relationship to classical MACs and duplex constructions. Section 5

constructs a ProMAC instance and proves its security properties. In

Section 6, this construction is evaluated in realistic settings and its

performance and security claims are evaluated. Section 7 concludes

the paper.

2 REQUIREMENTS AND RELATEDWORK
We start by motivating the requirements sketched out in Section 1.

We then discuss relevant prior work and show that none of it

satisfies all of these requirements, thus motivating a new design.

2.1 Requirements
We consider a scenario that involves two parties that share a secret

𝑘 and exchange packet streams. Packets are sent over an insecure

channel controlled by an active attacker that can inject, delete and

manipulate traffic. Our objective is to protect the integrity of these

streams at the packet level. Since the number of packets in a stream

may not be known beforehand, or because different packets may

have different levels of security criticality (see below), we have

Requirement I: Each packet should be authenticated immediately

upon (or briefly after) its reception.

The common approach to packet stream integrity is to introduce

a per packet MAC tag. However for high-frequency streams of short

packets, transmission of a full MAC tag amounts to appreciable

overhead, as can be seen from the ratio of payload- to tag-length.

Applications controlling robots or drones, generate thousands of

packets per second [34], and that their delivery has to be guaranteed

with latency on the order of milliseconds [22], at an effective packet

loss rate of under 10
−9

in manufacturing environments. This agrees

with [52] for Tactile Internet applications (or any control loop

with haptic feedback) and [3] for drone control. For the latter, we

expect packet sizes of dozens of bytes [3], while robot control

packets are in a 15-20 byte range [19, 48]. Providing acceptable

integrity of such a packet stream with a standard HMAC-SHA256

translates to extending each payload by 32 bytes. This results in

an overhead of ≈ 200%, clearly rendering timely delivery for robot

control applications impossible.

Another example is 802.15.4 – the foundation of ZigBee and one

of the standard communication technologies for remote control. In

802.15.4, a millisecond delay can only be achieved with packet sizes

under 30 bytes [24]. Consequently, we deduce

Requirement II: Tag sizes should be minimized to reduce com-

munication overhead.

Of course it is possible to lower bandwidth overhead caused by

MAC tags by simply reducing their bit-size. This yields a linear

performance gain, as fewer bits are transmitted, yet it also results

in an exponential security loss, since only transmitted tag bits are

available to check each packet’s integrity. This can threaten safety

and security of underlying applications (see top of Fig. 1) and is

generally not acceptable in all use-cases [41].

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

212

Approach Req. I Req. II Req. III Req. IV

Common MAC ✓ - ✓ ✓
Truncated MAC ✓ ✓ - ✓

MAC over

aggregated packets

- ✓ ✓ ✓

Aggregated MACs ✓ ✓ ✓ -

Stateful MACs ✓ ✓ ✓ -

ProMAC ✓ ✓ ✓ ✓

Table 1: Overview of other prominent MAC schemes with
respect to requirements I–IV.

However, in several settings corruption of single packets in a

streammight be acceptable, as long as most packets are verified and
corruptions are still detected. This is particularly relevant to use-

cases where retransmissions are undesirable, e.g., in video stream-

ing, due to high data volume, a single corrupted framemight only be

perceived as glitch, or in LoRaWAN sensors each packet transmis-

sion is costly and retransmissions must be avoided. Thus, detection

of a single corrupted packet should be viewed as a normal event,

which should not adversely affect the entire packet stream.Whereas,

in prior techniques, a single packet authentication error leads to a

stream reset, which includes tearing down the current session and

establishing a new one. Consequently, it is desirable to have higher

than the security of plain tag truncation.

Requirement III: High security guarantees in the long term, i.e.

comparable to traditional MAC schemes and above the secu-

rity of plain tag truncation.

Finally, communication (especially wireless) is subject to occa-

sional transmission failures, e.g., malformed or dropped packets.

Within the described use-cases it is much more sensible to keep the

packet stream running and to allow for implicit resynchronization.

Consequently, any practical security approach should support

Requirement IV: Ability to resynchronize without explicit pro-

tocol communication.

2.2 Related Work
We now demonstrate that prior relevant prior techniques do not

satisfy all four requirements identified above. An overview is shown

in Table 1.

2.2.1 Common MACs. As pointed out, the standard approach for

ensuring packet integrity is to use common MACs, e.g., [4, 7, 10,

11, 27]; see Section 3.1 for a formal MAC definition. Althought

appending a single full-blown MAC tag to each packet allows for

the packet’s immediate authentication upon receipt, the goodput is

reduced by the size of the tag, which violates requirement II.

2.2.2 Truncated MACs. In settings that require low latency, and

have constraints on packet size or energy consumption, regular

MACs incur excessive overhead. To remedy the situation, it may

be sufficient to protect packets from modification for a short time.

Assuming that an adversary could neither predict nor forge a packet,

and would have to find a packet along with a corresponding valid

tag within a short period of time, some techniques offer lower

security guarantees commensurate with reduced overhead.

This idea has been suggested for several specific cases. To achieve

real-time communication on the CAN bus, [50] propose to add

short MACs to CAN frames, evaluating performance for tags of

various lengths. IEEE 802.15.4 (the foundation of ZigBee) also de-

scribes MAC truncation to as lowe as 32 bits [24], mainly to con-

serve transmission power and time. IPSec and DTLS are network-

and session-layer protocols, respectively, that support truncated

MACs of 96 [21, 51] and 80 [38] bits. Even the main signature and

MAC standards, such as HMAC [35–37, 43], DSS [42], ISO/IEC

9797 [53, 54], SHA3-based cSHAKE, KMAC, TupleHash, and Paral-

lelHash [31] support truncated MACs. However, using truncated

MACs results in an exponential security loss in the number of

truncated bits, hence violating our requirement III.

2.2.3 Aggregating Packets. A straightforward approach to satisfy

requirements II and III (and, to some extent, IV) is to aggregate

packets before generating a MAC, i.e., compute a tag over multiple

packets. This way, instead of each packet carrying a MAC, only one

out of every number of packets carries it. On prominent aggregation

technique in [23] shows how each packet is transmitted with a

hash of the subsequent packet, thus providing a means to detect

modifications of future packets. The signature of the first packet

includes the hash of the second packet and this signature is sent

at the beginning of the stream. This approach requires advance

knowledge of the entire packet stream. Another technique in [23]

is based on online stream authentication, where trust is chained by

sending the public key for verification of each subsequent packet.

EMSS [44] and its several adaptations [14, 15] reverse the above

idea by sending a full-length hash of previous packets to allow for

modification detection without source authentication, and a full

signature for authentication at the end of the stream. However, this

easily allows an adversary to forge packets until a tag is actually

required, which conflicts with requirement I.

2.2.4 Aggregated MACs. The idea behind aggregated MACs is that

tags are computed individually for each packet and are then com-

bined into a single tag. One example is XOR MAC [6] which does

not provide a security level above truncated MACs, hence contra-

dicting requirement III. Moreover, resynchronization is not directly

possible (requirement IV). The concept of aggregated signatures

was extended to MACs in [29] and was later generalized in [33]

(see also [18]). While higher security levels are possible, no current

scheme allows for direct resynchronization. To reduce MAC band-

width overhead, Mini-MAC [49] adapts the resulting tag length

according to the available space within its use-case. It respects

stream characteristics by including a history of previous packets as

MAC input. Besides the fact that including a packet history signifi-

cantly raises the computation overhead, resynchronization is not

supported.

2.2.5 Stateful MACs. Similar to our motivation, stateful MAC

schemes focus on authenticity of data streams. A stateful MAC

is similar to a classical MAC combined with an additional state at

sender or receiver side. In this context, various security definitions

and stream properties have been defined, e.g., [12, 13, 20, 28, 32, 46].

Current sponge-based constructions (e.g., Keccak [9], Blinker

[47], Strobe [26] and Xoodoo [17]) can be used as stateful MACs

to take advantage of the specific proprerties of packet streams. By

operating in MAC-and-continue mode [47], internal state forward-

ing can be realized. Furthermore, the duplex operation mode [8] of

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

213

sponge constructions can be used to output shorter tags to achieve

statefulness and efficient transmission. The major distinction is

that these constructions are fixed in their chaining approaches, i.e.,

using the whole preceding packet stream as a chain. This inherently

prevents resynchronization of internal states in case of a disruption,

thus violating requirement IV.

3 PRELIMINARIES
3.1 Message Authentication Codes
We use the standard definition of Message Authentication Codes

(MAC) from [30].

Definition 3.1 (Message Authentication Codes (MACs)). A MAC

scheme includes several sets and probabilistic algorithms. The sets

are:

• M - the message space

• K - the key space

• T - the tag space

Furthermore, the following algorithms are involved:

(1) The key-generation algorithm Gen samples a secret key 𝑘 ∈ K
(2) The tag-generation algorithm Sig takes as input a key 𝑘 and a

message𝑚 and outputs a MAC tag 𝑡 .

(3) The verification algorithmVrfy takes as inputs a key𝑘 , a message

𝑚, and a tag 𝑡 and outputs a decision 𝛿 ∈ {true, false}. true
indicates that the tag is valid, while false means that the tag is

invalid.

3.2 Pseudorandom Functions
Our construction will be based on a pseudorandom function (PRF),

as defined below.

Definition 3.2 (Pseudorandom Function). A function

𝐹 : {0, 1}ℓ×{0, 1}𝑛 → {0, 1}𝑚 is called (𝑞, 𝑡, 𝜀)-pseudorandom if the

following holds. Consider an algorithm D, called the distinguisher.

D gets black-box access to either 𝐹𝑘 for a uniformly sampled 𝑘 ∈
{0, 1}ℓ (with 𝐹𝑘 (·) = 𝐹 (𝑘, ·)), denoted by D𝐹𝑘

, or black-box access

to a uniformly sampled function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 , denoted

by D 𝑓
. Eventually, D outputs a bit 𝑏 ∈ {0, 1}, denoted by 𝑏 ← D.

Then, if D runs in time at most 𝑡 and makes at most 𝑞 queries to

the black box, it holds that���𝑃𝑟 [1← D𝐹𝑘
]
− 𝑃𝑟

[
1← D 𝑓

] ��� < 𝜀. (1)

4 PROGRESSIVE MACS
We start by overviewing our constructions, before formally defining

ProMACs and their security properties.

4.1 Overview
Progressive MACs combine the concepts of aggregated packets

and stateful MACs, mentioned in Section 2. At the beginning, both

sender and receiver agree on the same internal, secret state, based

on a shared secret key. For each packet, a tag is computed and sent

together with the packet. The value of the tag depends on both

the packet and the internal state. Moreover, the state is updated

according to the current packet.

On the one hand, this allows immediate verification of packets

(Requirement I). On the other hand, each tag now depends on

both the current and previous packets. This yields progressive

authentication, whereby future tags implicitly increase confidence

of the integrity of earlier packets. Note that this allows us to use

smaller tags (Requirement II) while a high level of security, with

respect to tag integrity, is gradually achieved (Requirement III).

To support resynchronization, internal state update can be con-

figured such that it depends only on a limited number of previous

packets, denoted as Area of Dependency. Thus, even if a transmis-

sion error occurs, it is guaranteed that after correctly receiving

a sufficient number of packets, the sender and receiver states are

automatically synchronous again (Requirement IV). We want to

point out that if fast resynchronization is necessary, one can choose

an Area of Dependency of a rather short length. Even if the state

depends only on the current and the previous packets, i.e., a length

of two, it allows us to halve the length of tags and significantly

reduce bandwidth overhead.

Fig. 2 depicts the generic ProMACs workflow.

𝑚𝑖 𝑡𝑖

S
t
a
t
e
𝑠 𝑖

𝑆𝑖𝑔𝑘

𝑈𝑝𝑑𝑘

𝑚𝑖+1 𝑡𝑖+1

S
t
a
t
e
𝑠 𝑖

𝑆𝑖𝑔𝑘

𝑈𝑝𝑑𝑘

Figure 2: Generic workflow of a progressive MAC scheme.
The tag generation 𝑆𝑖𝑔𝑘 might produce short tags.

Security of ProMACs is intuitively determined by several param-

eters: Forging a single packet is as difficult as guessing a single

truncated tag (either guessing the secret key, or the tag directly),

yet only if no subsequent packets with their corresponding tags

are received. Hence, an adversary has to prevent delivery of any

tag subsequent to the forged packet, or actively guess all subse-

quent tags successfully, since the recipient would detect forgery

otherwise.

Consequently, in theory, ProMACs security against existential

forgery is the same as that of classical MACs: an attacker who aims

to manipulate only the last packet of a ProMACs-protected packet

stream must put in the same effort as in the case of a classical

(truncated) MAC.

In practice, however, using ProMACs that incorporates informa-

tion about previous packets in its internal state makes selective

forgery more difficult in the following sense: the more packets are

following in the stream after tampering, the more adversarial effort

it takes, since the subsequent tags need to be forged as well. Note

that if these tags are not forged accordingly, the attack is detected.

That is, only in the case that an attacker aims to forge the last

packet
1
, security of a ProMACs falls back to the security of classical

(possibly truncated MACs). In all other cases, ProMACs provides a

higher level of security. Moreover, ProMACs can easily be extended

to use varying-length tags. By using a higher tag length for the last

packets, security of these would be at least as high as using a MAC

with a standard security level, e.g., 128 bits.

1
Note that it may not always be clear when the end of a packet stream is reached.

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

214

4.2 Formal Definition
We first provide a formal definition of ProMACs. This definition

extends the notion of classical MACs [30]. While the extension

is rather intuitive, defining the corresponding security properties

is more subtle. The challenge is to correctly capture the kind of

information an attacker may collect before attempting forgery. We

provide a concise definition in Section 4.3. Note that our definition

of ProMACs covers classical MACs as a special case. We discuss

this in detail at the end of this section.

Definition 4.1 (Progressive MACs). A progressive MAC (ProMAC)

scheme includes several sets and algorithms. The sets are:

• M - the packet space

• K - the key space

• S - the state space

• T - the tag space

Also, the following algorithms are included: (Gen, Init,Upd, Sig,Vrfy).
We assume that the party that uses a ProMAC maintains an inter-

nal state from S. The working principles of the algorithms are as

follows:

(1) The probabilistic key-generation algorithmGen samples a secret

key 𝑘 ∈ K
(2) The probabilistic initialization algorithm Init samples an initial

state 𝑠0 ∈ S
(3) The deterministic update algorithm Upd : K × S ×M → S

takes as input a key 𝑘 ∈ K , a state 𝑠 ∈ S, and a packet𝑚 ∈ M
and outputs a new state 𝑠 ′. We write this as 𝑠 ′ := Upd𝑘 (𝑠,𝑚)

(4) The deterministic tag-generation algorithm Sig takes as input a

key 𝑘 , a state 𝑠 , and a packet𝑚 and outputs a tag 𝑡 . We write

this as 𝑡 := Sig𝑘 (𝑠,𝑚).
(5) The deterministic verification algorithm Vrfy takes as inputs a

key 𝑘 , a state 𝑠 , a packet𝑚, and a tag 𝑡 and outputs a decision

𝛿 ∈ {true, false}. The output true indicates that the tag has

been accepted while it has been rejected in the case of false. We

write this as 𝛿 := Vrfy𝑘 (𝑠,𝑚, 𝑡).

We chose our algorithms Sig and Upd to be deterministic, since

in the case of probabilistic algorithms we would have to transmit

additional information, which conflicts with our primary objective,

to achieve efficient communication.

While classical MACs operate independently on single packets,
ProMACs are meant to be used for integrity of packet streams. To
this end, the workflow is as follows (see Fig. 2): Initially, a secret

key is generated by executing Gen. Then, for each packet stream

a random initial state 𝑠0 is picked by Init. The random initial state

is communicated in the clear to other parties. Given this, for each

packet𝑚𝑖 in the packet stream, the state is updated using Upd and

the next tag is produced via Sig from this state. This results into

a stream of the form 𝑠0,𝑚1, 𝑡1,𝑚2, 𝑡2, Verifiers use 𝑠0 as initial

state and then subsequently update the state using Upd and the

incoming packets and finally validate the corresponding tags using

Vrfy.

4.3 Correctness and Soundness
4.3.1 Correctness. Correctness means that, for every key 𝑘 output

by Gen, for every initial value 𝑠0 ∈ S, for every 𝑗 ≥ 1, and for

every sequence of packets (𝑚1, . . . ,𝑚 𝑗) ∈ M 𝑗
, it holds that if the

corresponding tags (𝑡1, . . . , 𝑡 𝑗) are honestly computed as outlined,

the verification algorithm Vrfy accepts all of these.

Defining the notion of security is less straightforward for the

the following two reasons. First, the common security model for

MACs allows an attacker to make sign queries to an oracle to learn

the tags for selected packets, i.e., the input to the Sig algorithm.

However, our situation is different since the tag is computed from

an internal state unknown to an attacker.

Second, for practical reasons we want to support easy resynchro-

nization, i.e., even if some packets in a stream are lost, it should be

possible to validate the remaining packets. Technically, this means

that both sender and receiver should eventually reach the same

state again, even if some packets are lost. To this end, we introduce

an additional notion, Area of Dependency, with respect to the up-

date function that reflects how many successive packets determine

the next state.

4.3.2 Area of Dependency. Before we define Area of Dependency,
we need to extend our notation. We writeUpd𝑖

𝑘
(𝑠0,𝑚1, . . . ,𝑚𝑖) = 𝑠𝑖

to reflect that applying 𝑖-times the update function on initial state

𝑠0 with key 𝑘 on packets𝑚1, . . . ,𝑚𝑖 results into state 𝑠𝑖 . That is, we

have:

Upd1
𝑘
(𝑠0,𝑚1) = Upd𝑘 (𝑠0,𝑚1)

Upd2
𝑘
(𝑠0,𝑚1,𝑚2) = Upd𝑘 (Upd𝑘 (𝑠1,𝑚1),𝑚2)

and so on.

Definition 4.2 (Area of Dependency). Consider a ProMAC with an

update function Upd. We say that Upd has (𝑢 + 1)-independence if
the following holds: for any state 𝑠 ∈ S, any key 𝑘 given by Gen,
and any packets𝑚2, . . . ,𝑚𝑢+1, there exists a state 𝑠 ′, such that

Upd𝑢+1
𝑘
(𝑠,𝑚′,𝑚2, . . . ,𝑚𝑢+1) = 𝑠 ′ ∀𝑚′ ∈ M . (2)

The Area of Dependency of Upd, denoted by ad(Upd), is defined to
be smallest 𝑢 such that Upd has 𝑢 + 1-independence. If all previous
packets might impact the current state, we write ad(Upd) = ∞.

Note that this definition requires that the condition must hold for

any state 𝑠 and is not restricted to states sampled by Init. The intent
of this definition is that an update function Upd with ad(Upd) = 𝑢

has the property that the current state is independent from the

(𝑢 + 1)th-last packet. Consequently, each state depends on (at most)

last 𝑢 packets, the initial state, and the current index, as we show

next:

Proposition 4.3. Consider a ProMAC with an update function
Upd with ad(Upd) = 𝑢. Let 𝑖 > 𝑢 and

Upd𝑖
𝑘
(𝑠0,𝑚1,𝑚2, . . . ,𝑚𝑖) = 𝑠𝑖 . (3)

for some arbitrary initial state 𝑠0 given by Init, arbitrary key 𝑘 given
by Gen, and arbitrary packets𝑚1, . . . ,𝑚𝑖 . Then, it holds that 𝑠𝑖 and
all follow-up states 𝑠𝑖+1, 𝑠𝑖+2, . . . are independent from the content
of the packets𝑚1, . . . ,𝑚𝑖−𝑢 . In other words, the current state 𝑠𝑖 can
depend only on the initial state, the key, the last 𝑢 − 1 packets and
the index 𝑖 . That is, the current state is independent of the last-but-𝑢
packets, and depends only on the initial state and the last𝑢−1 packets
(or less).

Proof. We show the claim by induction over 𝑖 .

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

215

Let 𝑖 := 𝑢+1. Following Definition 4.2, 𝑠𝑖 is independent from𝑚1.

Now let 𝑗 ≥ 1 be arbitrary. Since 𝑠𝑖+𝑗 = Upd𝑗
𝑘
(𝑠𝑖 ,𝑚𝑖+1, . . . ,𝑚𝑖+𝑗),

this state is independent from from𝑚1 as well.

Now assume that the claim holds for some 𝑖 ≥ 𝑢 +1, i.e., all states
𝑠𝑖 , 𝑠𝑖+1, . . . are independent from packets:𝑚1, . . . ,𝑚𝑖−𝑢 . It suffices

to show that states: 𝑠𝑖+1, . . . are independent from𝑚𝑖−𝑢+1. The fact
that 𝑠𝑖+1 is independent from𝑚𝑖−𝑢+1 follows from Definition 4.2

(note that the definition is not restricted to states sampled by Init)
and the fact that 𝑠𝑖+2, . . . are independent from𝑚𝑖−𝑢+1 can be shown
as above for 𝑖 = 𝑢 + 1. □

A consequence of Proposition 4.3 is that for each 𝑖 ≥ 1, there

exists a procedure Upd[𝑖] , such that for all initial states 𝑠0 given

by Init, all keys 𝑘 given by Gen, and all packets𝑚1, . . . ,𝑚𝑖 , it holds

that:

Upd𝑖
𝑘
(𝑠0,𝑚1, . . . ,𝑚𝑖) = Upd[𝑖]

𝑘
(𝑠0, 𝑖,𝑚max{1,𝑖−𝑢+1}, . . . ,𝑚𝑖). (4)

That is, Upd[𝑖] gets as input only the initial state 𝑠0, the index 𝑖 ,

and the last 𝑢 − 1 packets (or less if 𝑖 < 𝑢 − 1), but computes the

same internal state as Upd𝑖 .

4.3.3 Soundness. We now define security of ProMAC based on

a game played by an attacker A and an oracle O. Although the

security definition is similar to that of traditional MACs, it needs

to take into account the concepts of state and Area of Dependency

to correctly cover the notion of forgery.

The game works as follows. At the beginning, O samples a secret

key 𝑘 and initializes an empty set Q = ∅. Also, let ad(Upd) = 𝑢 <

∞.2
The attacker can now make Sig-queries to O. Formally, it sends

a sequence of initial state, an index 𝑖 , and packets and receives the

corresponding tag of the last packet. To this end, we distinguish

between 𝑖 ≤ 𝑢 and 𝑖 > 𝑢.

𝑖 ≤ 𝑢: The attacker sends a query 𝑄 := [𝑠, 𝑖,𝑚1, . . . ,𝑚𝑖] ∈ S ×
N ×M𝑖

to O whereN denotes the set of positive integers

and 𝑠 is some initial state. The oracle O first computes 𝑠 ′ :=
Upd𝑖−1

𝑘
(𝑠,𝑚1, . . . ,𝑚𝑖−1) where we set 𝑠 ′ := 𝑠 in case of 𝑖 = 1.

Afterwards, it computes 𝑡 := Sig𝑘 (𝑠 ′,𝑚𝑖), appends it to 𝑄 ,

and returns 𝑡 to A.

𝑖 > 𝑢: The attacker sends a query 𝑄 := [𝑠, 𝑖,𝑚1, . . . ,𝑚𝑢] to O. The
oracle determines 𝑠 ′ := Upd[𝑢−1]

𝑘
(𝑠,𝑚1, . . . ,𝑚𝑢−1) and then

𝑡 := Sig𝑘 (𝑠 ′,𝑚𝑢). Finally, it appends 𝑡 to the query 𝑄 and

returns 𝑡 to the attacker.

In both cases, the sequence 𝑄 is inserted into Q, i.e., Q := Q ∪ {𝑄}.
We call the elements stored in Q the query sequences.

Eventually, the attackerA outputs potential forgery, in the form

of a sequence: 𝑄∗ := [𝑠∗
0
,𝑚∗

1
, 𝑡∗
1
, . . . ,𝑚∗𝑟 , 𝑡

∗
𝑟] for 𝑟 ≥ 1. The attacker

wins the game if the tags are accepted while not all of them have

been previously queried in this form by the attacker. To make “in

this form” more precise, we need to take a look at all subsequences

from 𝑄∗. These are defined as follows, where 𝑢 := ad(Upd):
Q∗ := {[𝑠∗

0
, 1,𝑚∗

1
, 𝑡∗
1
], . . . , [𝑠∗

0
, 𝑢 − 1,𝑚∗

1
, . . . ,𝑚∗𝑢 , 𝑡

∗
𝑢],

[𝑠∗
0
, 𝑢 + 1,𝑚∗

2
, . . . ,𝑚∗𝑢+1, 𝑡

∗
𝑢+1], . . . ,

[𝑠∗
0
, 𝑟 ,𝑚∗𝑟−𝑢+1, . . . ,𝑚

∗
𝑟 , 𝑡
∗
𝑟]}.

2
The case of ad(Upd) = ∞ will be discussed at the end.

We call the elements of Q∗ the forgery sequences. Note that for each
Q∗ that also appears in Q, it holds that the attacker already knew

that this combination of initial state, index, and packets leads to

the respective tag. Thus, the attacker wins if at least one of these

forgery sequence has not been asked before, i.e., is not equal to a

query sequence stored in Q. We denote forgery sequences that are

not part of Q as fresh forgery sequence. Thus, the winning condition
can be reformulated to mean that an attacker produces a packet

stream with associated tags, such that: (i) all tags are accepted, and

(ii) at least one forgery sequence is fresh, i.e., Q∗ ⊈ Q.
We define a progressive MAC to be (𝑞,Δ, 𝜖)-secure if no adver-

sary that makes at most 𝑞 Sig-queries can succeed in the above

experiment to generate Δ fresh forgery sequences with probability

above 𝜖 , i.e.,

𝑃𝑟 [A wins] ≤ 𝜀. (5)

We say that the scheme is (𝑞, 𝜖)-secure if the attacker can freely

choose the number Δ ≥ 1 of fresh sequences.

The Case of ad(Upd) = ∞. The treatment of the case ad(Upd) =
∞ is quite similar. In a nutshell, the difference is that the queries

contain all 𝑖 packets and not the last 𝑢 packets only. For instance,

the forgery sequences are [𝑠∗
0
, 𝑖,𝑚∗

1
, . . . ,𝑚∗

𝑖
, 𝑡∗
𝑖
] for 𝑖 = 1, . . . , 𝑟 .

4.4 Relation to Classical MACs and
Duplex-based Constructions

Before discussing concrete ProMACs instantiations of ProMACs in

the next section, we note that the definition (including the notion

of security) extends the concept of classical MACs that operates on

M and also stateful MACs as duplex-based constructions.

More precisely, let 𝑀 denote a classical MAC with algorithms

𝑀.Gen,𝑀.Sig, and𝑀.Vrfy. We define a ProMAC𝑀 based on𝑀 by

essentially ignoring the internal state. That is we set S = {𝑠0} for
some dummy value 𝑠0 and define Upd𝑘 (𝑠0,𝑚) := 𝑠0 for any packet

𝑚. Finally, we set 𝑀.Gen := 𝑀.Gen, 𝑀.Sig𝑘 (𝑠0,𝑚) := 𝑀.Sig𝑘 (𝑚),
and𝑀.Vrfy𝑘 (𝑠0,𝑚, 𝑡) := 𝑀.Vrfy𝑘 (𝑚, 𝑡) for all keys𝑘 and all packets

𝑚. Note that ad(Upd) = 1, i.e., current state depends only on the

current packet. Consequently, all query sequences stored during

the security game have the form [𝑠0,𝑚, 𝑡] where 𝑠0 can be ignored.

Thus, both the working principle and security of 𝑀 is effectively

equivalent to𝑀 .

On the other hand, if we set ad(Upd) = ∞, i.e., each tag de-

pends on all packets so far, we have a stateful MAC similar to the

duplex-based constructions. In that sense, ProMACs can be seen as

a tradeoff between both constructions.

Finally, we stress that a ProMAC can be expressed as a classical,

deterministicMACwith packets of the form: [𝑠, 𝑖,𝑚1, . . . ,𝑚min{𝑢,𝑖 }]
(see Definition of Sig-queries in Section 4.3.3). In particular, for each
such query the resulting tag there exists exactly one tag. Using

the notions and arguments from [5] (which also considers MACs

that operate on packets of varying lengths), it follows that: (i) the

security definition given in Section 4.3 captures SUF-1 (strong un-

forgeability with single access to a verification algorithm), and (ii)

SUF-1 implies SUF-m (strong unforgeability with multiple access

to a verification algorithm). Therefore, it is unnecessary to define

verification queries in the security game.

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

216

𝑚𝑖 𝑡𝑖

𝑠 𝑖

𝑖
𝑠 0

𝑠
[𝑖,
𝑢
]

𝑖
𝑠 0

++

𝐹
sig

𝑘′′

𝐹
upd

𝑘′

𝑚𝑖+1 𝑡𝑖+1

𝑠 𝑖
+1

𝑖
+
1

𝑠 0
𝑠
[𝑖+

1
,𝑢
]

++

𝐹
sig

𝑘′′

𝐹
upd

𝑘′

Figure 3: Core concept of the ProMAC instantiationWhips, with state update Upd and tag generation Sig realised through one
PRF each.

5 WHIPS
In this section, we present a concrete ProMACs instantiation, dubbed

Whips
3
. It uses two pseudorandom functions (PRFs) 𝐹

upd

𝑘′
and 𝐹

sig

𝑘′′
as building blocks and allows one to freely choose the tag size. This

makes them compelling candidates for wireless communication.

To achieve high bandwidth efficiency, the practical constructions

employ a small tag space, i.e., the tag length 𝜏 is small (which re-

sembles simple truncation). Moreover, it allows re-synchronization

after 𝑢 packets.
4
To this end, the current state is composed of a

counter and 𝑢 so-called substates where one packet determines one

substate.

5.1 Specification
We start by defining the sets:

• M := {0, 1}𝜇 - the packet space

• K := {0, 1}𝜅upd+𝜅sig

- the key space

• S := {0, 1}𝛾+(𝑢+1) ·𝜎 - the state space with 𝛾 being the length

of a counter and 𝜎 being the length of substates
• T := {0, 1}𝜏 - the tag space

Whips maintains internal state 𝑠𝑖 composed of: counter 𝑖 , initial

substate 𝑠0 ∈ {0, 1}𝜎 , and 𝑢 previous substates 𝑠𝑖−𝑢 , . . . , 𝑠𝑖−𝑢 ∈
{0, 1}𝜎 . To simplify the description, we define the term 𝑠 [𝑖,𝑢] ∈
{0, 1}𝑢 ·𝜎 for 𝑖 ≥ 0 as:

𝑠 [𝑖,𝑢] :=


𝑠𝑖−𝑢+1, 𝑠𝑖−𝑢+1, . . . , 𝑠𝑖 , 𝑖 − 𝑢 + 1 ≥ 0

𝑠0, . . . , 𝑠0︸ ︷︷ ︸
𝑢−(𝑖+1) times

, 𝑠0, 𝑠1, . . . , 𝑠𝑖 , else . (6)

Using this, internal state is defined as:

𝑠𝑖 = (𝑖, 𝑠0, 𝑠 [𝑖,𝑢]), (7)

where 𝑠0 is the initial state. In each round, the next packet𝑚𝑖+1 is
processed to compute: (i) the next state 𝑠𝑖+1, and (ii) the next tag

𝑡𝑖+1. To this end, the two PRFs: 𝐹
upd

𝑘′
and 𝐹

sig

𝑘′′
. are used, respectively.

Below we assume that the sampled key 𝑘 has the form 𝑘 = (𝑘 ′, 𝑘 ′′)
3
The inspiration for the name is that the sliding ”Area of Dependency” resembles the

moving ”wave” when cracking a whip.

4
In the following, we consider the case where𝑢 is finite. At the end, we shortly discuss

the case of 𝑢 = ∞.

and that these two parts have been used to initialize the two PRFs.

𝐹
upd

𝑘′
takes as input the counter, the initial substate, and the packet

and outputs the next substate:

𝐹
upd

𝑘′
: {0, 1}𝛾 × {0, 1}𝜎 × {0, 1}𝜇 → {0, 1}𝜎 (8)

(𝑖, 𝑠0,𝑚𝑖+1) ↦→ 𝑠𝑖+1 (9)

This defines the next state 𝑠𝑖+1 = (𝑖 + 1, 𝑠0, 𝑠 [𝑖+1,𝑢]) which is used

to compute the corresponding tag with the help of 𝐹
sig

𝑘′′
:

𝐹
sig

𝑘′′
: {0, 1}𝛾 × {0, 1}𝜎 × {0, 1}𝑢 ·𝜎 → {0, 1}𝜏 (10)

(𝑖 + 1, 𝑠0, 𝑠 [𝑖,𝑢]) ↦→ 𝑡𝑖 (11)

The core idea of the proposed instantiation is shown in Fig.3. We

now discuss the algorithms that are part of themodel, per Definition

4.1:

Key Generation Gen. The probabilistic key-generation algorithm

Gen samples a secret key 𝑘 ∈ K . Below we assume that sender and

receiver share a common secret key 𝑘 ∈ {0, 1}𝜅 and write 𝐹𝑘 (. . .)
instead of 𝐹 (𝑘, . . .).

Initialization Init. The probabilistic initialization algorithm Init
samples an initial substate 𝑠0 ∈ {0, 1}𝜎 and sets

5

𝑠0 = (0, 𝑠0, 𝑠 [0,𝑢]) . (12)

Also, it samples a key 𝑘 = (𝑘 ′, 𝑘 ′′) ∈ K to initialize the PRFs 𝐹
upd

𝑘′

and 𝐹
sig

𝑘′′
.

Update Upd and Tag Generation Sig. Both procedures: state up-

date and next tag computation, are accomplished by a call to one

PRF.
6
More precisely, let 𝑠𝑖−1 denote the current internal state

(with 𝑠0 being the initial state) and let 𝑚𝑖 be the current packet.

Then, Whips updates the internal state by computing:

𝑠𝑖 := 𝐹
upd

𝑘′
(𝑖 − 1, 𝑠0,𝑚𝑖) (13)

5
The first 𝑢 − 1 states contain multiple copies of 𝑠0 to be compatible with the overall

formal of all states.

6
In fact, one could replace the second PRF 𝐹

sig

𝑘′′ by a classical MAC. We chose to rely

on one type of cryptographic primitive, since it may be more efficient in practice to

implement it only once and use it with different keys, e.g., hash functions.

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

217

where 𝑢 = ad(Upd) is the Area of Dependency. This defines 𝑠𝑖 =
(𝑖, 𝑠0, 𝑠 [𝑖,𝑢]). Given this, Whips computes the tag 𝑡𝑖 for𝑚𝑖 by

𝑡𝑖 := 𝐹
sig

𝑘′′
(𝑠𝑖) . (14)

Verification. The verification algorithm Vrfy𝑘 computes on input

𝑠𝑖 ,𝑚𝑖 , 𝑡𝑖 first the tag 𝑡𝑖 and then compares it to the given 𝑡𝑖 . If both

are equal, the output is true; otherwise it is false.

The Case of Infinite 𝑢. If 𝑢 = ∞, i.e., the equivalent of duplex-
based chaining, it is no longer necessary to store the last𝑢 substates

to ”cancel” these out later. Instead, more compact solutions are

possible, e.g., setting 𝑠𝑖 = (𝑖, 𝑠0, 𝑠𝑖) and choosing an appropriate PRF

𝐹 . Here, we can take advantage of the fact that 𝑠𝑖 anyhow depends

on all previous states. For security reasons, it is necessary to choose

a higher value for 𝜎 .

5.2 Design Rationale
Before proving security of our construction, we briefly discuss why

𝑠𝑖 contains the counter, the initial state, and the recent substates.

Let us assume that the state did not contain a counter. Recall that

one goal of our construction is to realize an Area of Dependency to

support resynchronization. This means that, in a scenario where

the packet stream consists of the repetition of the same packet, i.e.,

𝑚0 =𝑚1 = . . ., the tags would all be the same, which would allow

for a simple forgery attack. The counter ensures freshness of the

state, even if the packets repeat.

Next, we assume that the state would not contain the initial state

value 𝑠0. Then, an attacker who can figure out the internal state

𝑠𝑖 for 𝑖 > 0 could produce a forgery by using 𝑠𝑖 as “initial state”.

Hence, the initial state, which is beyond attacker’s control, acts as

anchor for the trust chain. In addition, it prevents replay attacks in

the sense that tags observed for one initial state are re-used for a

different initial state.

Finally, to facilitate removal of “outdated” substates from the cur-

rent state calculation (to ensure an Area of Dependency of length𝑢),

the current state is mainly composed from most recent 𝑢 substates.

5.3 Proof of Security
Below, we prove security of our construction. Recall that the mo-

tivation of ProMACs is an attacker who aims to forge a certain

tag also has to forge upcoming tags. Consequently, the number of

tags to be forged needs to be a part of the security claim. In the

context of the security definition, this is equivalent to the number

of fresh forgery sequencesΔ (see the definition in Section 4.3.3).

The security claim is as follows:

Theorem 5.1. Consider an instantiation ofWhips with two (𝑞,𝑇 , 𝜀/2)-
pseudorandom functions 𝐹upd and 𝐹 sig, with substate length of 𝜎 , tag
length of 𝜏 ≥ 2, and counter length of at least 𝛾 ≥ log

2
(𝑞). Then,

for any attacker A who runs in time at most 𝑇 , makes at most 𝑞
Sig-queries and produces Δ fresh forgery sequences, the probability
of success is upper-bounded by:

𝑃𝑟 [A wins] ≤ 𝜀 + 𝑞
2 + 2𝑞
2
𝜎
+
(
1

2
𝜏

)Δ
. (15)

In the parameter choices, we suggest keeping 𝜏 small (since it

impacts bandwidth overhead), while 𝜎 can be large (since states

is only stored internally). Thus,
1

2
𝜏 can be seen as the dominating

term of the sum.

We note that (15) also describes the increasing security level

of the proposed scheme. Since the attacker’s advantage decreases

with every subsequent successful verification, i.e. with increasing

Δ, guaranteed security level for the respective packet is increasing

with each of these packets. For each verified packet, the security

level increases by transmitted tag bits with an upper bound of the

key length. Fig. 1 (bottom) depicts such an increasing security level,

while Fig. 4 demonstrates resynchronization properties of Whips
and the increasing security level.

Figure 4: Achieved security level for the respective incom-
ing packet, assuming a 64-bit tag size and 256-bit key size,
ad(Upd) = 4 and an error at packet #8.

Finally, we note that the proof is independent of 𝑢, i.e., the given

bound holds for both finite and infinite 𝑢.

Proof of Theorem 5.1. We show the security claim (15) by us-

ing a sequence of games 𝐺0-𝐺3. Since 𝛾 ≥ log
2
(𝑞), we exclude the

case of counter overflow, i.e., that the counter repeats after up to 𝑞

queries.

Game 𝐺0. Let 𝐺0 denote the original security game as described

in Section 4.3. We are interested in showing an upper bound for

𝑃𝑟 [A wins in 𝐺0].

Game𝐺1. 𝐺1 is defined as𝐺0 with the only difference that, when-

ever the attacker makes a Sig-query, it learns the full output of 𝐹upd
𝑘′

.

Since the attacker now has more information, the probability of

success is at least as high as before:

𝑃𝑟 [A wins in 𝐺0] ≤ 𝑃𝑟 [A wins in 𝐺1] . (16)

Game 𝐺2. 𝐺2 is based on 𝐺1 with the difference that the PRFs

are replaced by a randomly chosen functions. Because each PRF

is (𝑞, 𝑡, 𝜀/2)-pseudorandom and that A runs in time at most 𝑡 and

makes at most 𝑞 queries, it holds that:

𝑃𝑟 [A wins in 𝐺1] ≤ 𝑃𝑟 [A wins in 𝐺2] + 𝜀. (17)

Game 𝐺3. 𝐺3 is defined as 𝐺2 with the difference that the game

is aborted if during the Sig-queries, a collision in the states occurs.

An obvious upper bound is given by considering a collision on the

next substate only. Since 𝐹𝑘 is replaced by a random function, it

follows that:

𝑃𝑟 [A wins in 𝐺2] ≤ 𝑃𝑟 [A wins in 𝐺3] + 𝑞2/2𝜎 . (18)

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

218

It remains to upper bound 𝑃𝑟 [A wins in 𝐺3].
We assume that Δ = 1. Then, an attacker wins if: (i) either it can

produce a state collision or, (ii) a tag collision. That is, we have:

𝑃𝑟 [A wins in 𝐺3 |Δ = 1] = 𝑞

2
𝜎
+
(
1 − 𝑞

2
𝜎

)
· 1
2
𝜏
. (19)

Below we use 𝑐𝑖 :=
𝑞+𝑖
2
𝜎 where 𝑐 stands for ”collision”. We can

rephrase the equation as:

𝑃𝑟 [A wins in 𝐺3 |Δ = 1] = 𝑐0 +
1 − 𝑐0
2
𝜏

. (20)

Next, we consider the case of Δ = 2. For the first fresh sequence,

there are two possibilities: (i) a state collision, or (ii) a tag collision.

In the former, it follows that the second fresh sequence comes ”for

free”. In the latter, we again have the same possibilities for the

second fresh sequence. This yields:

𝑃𝑟 [A wins in 𝐺3 |Δ = 2] = 𝑐0 +
1 − 𝑐0
2
𝜏
·
[
𝑐1 +

1 − 𝑐1
2
𝜏

]
. (21)

By induction and using the fact that 1 − 𝑐𝑖 ≤ 1 for all 𝑖 ≥ 0, we

can show that probability of winning 𝐺3 with Δ fresh sequences is

upper bounded by:

𝑐0 +
𝑐1

2
𝜏
+ 𝑐2

2
2𝜏
+ . . . + 𝑐Δ−1

2
(Δ−1) ·𝜏 +

1

2
Δ ·𝜏 =

Δ−1∑
𝑖=0

𝑐𝑖

2
(𝑖) ·𝜏 +

(
1

2
𝜏

)Δ
. (22)

Note that, for the sum, it holds that for increasing Δ, the number of

terms in the sum increases, while their values decrease. Thus, we

aim to find an upper bound for the sum. Let 𝑖 ≥ 0 be arbitrary. For

the ratio of two successive, it holds that:(
𝑐𝑖+1

2
(𝑖+1) ·(𝜏+1)

)
/
(𝑐𝑖

2
𝑖 ·𝜏

)
=

𝑞 + 𝑖 + 1
𝑞 + 𝑖 · 1

2
𝜏
=

(
1 + 1

𝑞 + 𝑖

)
· 1
2
𝜏

≤ 2 · 1
2
𝜏
≤ 1

2

.

In other words, each term in the sum is at most half the size of

the previous term. This allows us to to derive the following upper

bound:

Δ−1∑
𝑖=0

𝑐𝑖

2
𝑖 ·𝜏 ≤ 𝑐0 +

𝑐0

2

+ 𝑐0

2
2
+ . . . + 𝑐0

2
Δ−1 < 2 · 𝑐0 =

2𝑞

2
𝜎
. (23)

Thus, it follows from equations (22) and (23), that attacker’s proba-

bility of success in game 𝐺3 with Δ fresh sequences can be upper-

bounded by:

2𝑞

2
𝜎
+
(
1

2
𝜏

)Δ
. (24)

Putting inequalities (16), (17), (18), and (24) together, our claim

follows. □

5.4 Parameter Selection
We assume the desired security level of 𝜆 against an attacker that

makes up to 𝑞 Sig-queries and aims for Δ fresh sequences. Next,

we discuss how to choose Whips parameters to meet these require-

ments. To this end, the upper bound:

𝜀 + 𝑞
2 + 2𝑞
2
𝜎
+
(
1

2
𝜏

)Δ
(25)

provided by Theorem 5.1 can guide parameter selection. Note that

the theorem already assumes that the counter is chosen to be suf-

ficiently large as to avoid any repetitions, i.e., 𝛾 ≥ log
2
(𝑞). The

values involved in this bound are:

• 𝜀/2 – PRF security levels (which also depends on key lengths:

𝜅upd and 𝜅sig)

• 𝜎– substate size

• Δ– tag length

To simplify the following discussion, we investigate how to ensure

that each of the three terms of the sum is below 2
−𝜆

. This results into

a slightly higher upper bound of 3·2−𝜆 , instead of 2−𝜆 . Alternatively,
we could upper-bound each term by 2

−𝜆−2
.

Ensuring that 𝜀 ≤ 2
−𝜆

depends on the choice of PRFs. A neces-

sary condition is to set the key lengths 𝜅upd, 𝜅sig ≥ 𝜆.

With respect to the second term, if we consider 𝑞2 to be domi-

nating, the following condition holds for the length of the substate:

𝜎 ≥ 2 log
2
(𝑞) + 𝜆. (26)

Since state size is 𝛾 + (𝑢 + 1) · 𝜎 , its lower bound is:

log
2
(𝑞) + (𝑢 + 1) · (2 log

2
(𝑞) + 𝜆) . (27)

Although this can be relatively large, it is acceptable in practice

since storing data is far cheaper than sending it.

Finally, the third term implies the following inequality:

𝜏 ≥ 𝜆/Δ. (28)

With respect to the PRFs, 𝐹
upd

𝑘′
and 𝐹

sig

𝑘′′
must yield output of

sizes 𝜎 and 𝜏 , respectively. To this end, the bounds given in (26) and

(28) can be used. We illustrate this with some concrete numbers.

Assuming the goal of 𝜆 = 128 bit security, we allow 𝑞 = 2
64

queries,

and support 𝑢 = 4. Then, state size has to be at least:

log
2
(𝑞) + (𝑢 + 1) · (2 log

2
(𝑞) + 𝜆) = 64 + 5 · (128 + 128) = 1344 (29)

bits or 168 bytes. 𝐹upd must produce outputs of 2 log
2
(𝑞) + 𝜆 =

128 + 128 = 256 bits, and 𝐹 sig– 𝜆/Δ = 128/Δ ≥ 128 bits. Thus, any

modern hash function could be used for realizing these two PRFs.

6 PERFORMANCE EVALUATION
In this section, we evaluate performance of the proposed Whips
schemes in real-world scenarios. In doing so, we aim to understand

the impacts of: computational overhead, energy savings, reduced

latency and validation errors. We also evaluate throughput gains

for various application and network settings.

Since this intends to be the main application, we first measure

the performance of Whips as drop-in replacement for integrity

schemes in robot control and WiFi communication, in experiments

on realistic hardware. Considering the dependency on reliable de-

livery and focus on resynchronization capabilities as well as the

fact that our realistic scenarios are characterized by comparatively

low packet loss, we subsequently extend the study and analyze

how performance and security evolve with increasing packet loss.

Finally, we analyse the computation overhead, latency gains and

energy savings of the proposed constructions. The results underline

that the combination of truncation and state chaining leads to both

transmission speedups and increased security levels in all scenarios

with somewhat realistic communication settings.

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

219

(a) Experiments with TMote Sky using 802.15.4 (b) Experiments with WiFi 802.11a 5GHz

Figure 5: Relative speedup over traditional integrity schemes (HMAC-SHA256)

6.1 Evaluation Scenarios and Setups
We consider two typical settings, where streams of short messages

are prevalent: (1) robot and drone control, and (2) general WiFi

communication.

Robot control assumes a constant stream of very small messages

(5 to 50 Bytes), transmitted over low power wireless net-

works, such as 802.15.4, at a transfer rate of 250 kbps [3].

The transmission latency is required to be around or under

1𝑚𝑠 , to prevent oscillations and reaction coupling [52]. We

employ Tmote Sky motes for this experiment, which are

popular and have been used in several prior studies [45].

WiFi communication Our results for WiFi communication are

obtained from measurements with two laptops, using Intel

Dual Band Wireless AC (2 x 2) 8265 and 8260 Chips.

The following Experimental Setup was used: All experiments

were conducted using two devices of the respective scenario, in a

typical office environment. We measured throughput, as well as

error characteristics for both our proposed and the traditional in-

tegrity schemes under test, using especially crafted software on the

Tmotes, and iperf3 on the laptops. We assume reliable communica-

tion at full integrity verification throughout all measurements: lost

or malformed packets are recovered using selective repeat request.

The setup of the robot control was chosen as described above, while

for the WiFi setup we connected two laptops via WiFi AdHoc, on

channel 129 of the 5GHz band. We started our experiments with

1-byte payload messages, and increased payload size by 1 Byte for

each subsequent measurement. We compare the results ofWhips
to measurements using traditional HMAC-SHA256 as the baseline.

In this section we demonstrate the major benefit of the proposed

schemes: combining the speedup of transmitting truncated tags

with a high effective security level.

6.2 Empirical Performance Measurements
To assess performance gains we measured Whips in realistic sce-

narios.

We ran several experiments using the robot control and WiFi

communication setup. As the length of the payload has the most

pronounced impact on speedup, we focused on varying payload

length.

Given the requirements for reliable communication with high

security, we expect Whips to achieve appreciable speedup over

traditional MACs. The essential advantage is that shorter tags are

transmitted than with traditional MAC schemes achieving simi-

lar security. The relative speedup depends on actual reduction of

transmitted bits per message, where message and headers remain

identical. The main differences in the measurements will hence be

caused by differing headers for the networking technologies, and

the effect of message loss.

Figure 5 presents our results for selected packet sizes, which

generally confirm our expectations. We observe a relative speedup

of over 200% for Whips with tag length < 80 for small messages.

The speedup drops to around 30-50% for message of 30 Bytes on

motes (robot control), and around 35-60% on laptops. It slowly drops

further with increasing message sizes. As WiFi is very stable, we

did not measure any significant packet loss.

In summary, measurements in the described use case scenarios

showed, that the proposedWhips scheme yield significant perfor-

mance increases, especially for the message sizes we expect to see

in robot and drone control.

6.3 Achieved Security Level
Whips is expected to provide considerably stronger security guar-

antees than truncated MACs, as shown in Eq. (15) and Fig. 4. This

advantage strongly depends on the reliability of transmission: each

lost or modified packet diminishes the effective security level that

Whips can reach for directly preceding and succeeding received

packets. We hence want to investigate the effect of errors on the

actual security level provided by our scheme.

The empirical performance assessment (Sec. 6.2) provided only

uncontrolled and rare occurrences of errors and are therefore un-

suitable for a thorough analysis. Hence, we used synthetic models

to analyze the impact of errors on our proposed constructions.

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

220

0
10
−2

10
−1

10
0

Error probability

0

50

100

150

200

250

M
e
a
n
s
e
c
u
r
i
t
y
l
e
v
e
l
i
n
b
i
t

𝜏 =128, u=2

Trunc 128

𝜏 =64, u=4

𝜏 =64, u=2

Trunc 64

𝜏 =32, u=8

𝜏 =32, u=2

Trunc 32

𝜏 =16, u=16

𝜏 =16, u=2

Trunc 16

Figure 6: Performance of Whips with respect to packet er-
ror probability, where an error might be loss of verification
failure.

A uniformly distributed error represents the worst case scenario,

as it reduces the guaranteed security level the most (see Fig. 4).

For the subsequent analyses we therefore assume such an error

distribution. Thereby, we can deduce the respective bounds for the

worst case, whereas practical realizations of the construction are

bound to perform better.

For this analysis we simulated 1.000.000 messages transmissions

and generated uniformly distributed errors with probability 𝑝 . Each

experiment was repeated 1.000 times to generate statistically sound

results. Our schemes are parameterized regarding the tag length 𝜏

and the Area of Dependency 𝑢, the internal state as well as the key

have a size of 256 bits. We compare our schemes against HMAC-

SHA256, truncated to the same tag length 𝜏— thereby, our experi-

ments and the compared baseline would achieve to same through-

put/speed. As the message length does not influence the achieved

security level, we omitted it from this analysis.

The proposed Whips construction reacts differently to errors

than related schemes, like duplex constructions, as described in

Sec. 4: Duplex constructions employ a tightly coupled state chain-

ing. Thus, a single error breaks the transported trust and the chain

needs to be explicitly restarted. Although such schemes can always

guarantee the full possible security level, the explicit restarting

inflicts additional communication overhead, which tends to be un-

favourable in the described use cases.

Whips allows for resynchronization after verification errors,

shown in Fig. 4. As the effective security level depends on the error

occurrences, we analyzed the achieved security level in relation to

the error probability after verification of the last message (in Fig. 4

this corresponds to the last time slot, i.e the right-most column).

The results for Whips are shown in Fig. 6, plotted in log-scale

(we manually inserted the result for a 0% error rate for conve-

nience). Here, an error might be a packet loss or verification failure

— thereby, the notion of mean security level becomes reasonable: as

we are specifically investigating to overall security of the whole

message stream, including the mentioned verification failures, the

average security level can represent the schemes performance much

better. The usually used notation of minimum security would al-

ways give 0𝑏𝑖𝑡 as result in this setting and thus allow little insight.

Figure 7: The respective highest error probability, for which
the proposed schemes achieve higher security levels than
simple truncation. The repetitions yielded maximal stan-
dard deviations of 0.00034

In this experiment, higher error probability mean more received

packets with verification failure (i.e. security level of 0), leading

to decreasing mean security levels (even for simple truncation). In

the figure different tag lengths 𝜏 are represented in identical colors,

with the respective baseline being plotted as a dashed line. Values

for the same Area of Dependency 𝑢 are denoted using identical

markers. Error probabilities from 0.00 − 0.01 are plotted linearly,

the remaining range up to probability 1 is plotted in log-scale. The

figure shows, that for expected and even a range of higher error

probabilities our construction can guarantee significantly higher

security levels than simple truncation, achieving even up to the

full security of 256 bits. For error probabilities of 0.10, the ProMAC

construction achieved almost twice the security level as compared

to simple truncation (e.g. 128𝑏𝑖𝑡 vs 211𝑏𝑖𝑡). Even when the error

probability reaches 0.38, Whips still outperforms simple truncation

in terms of achieved security.

To understand the actual benefit over truncation better, we in-

vestigated the boundary error probability, after which truncation

achieves better security than ProMACs. Fig. 7 depicts these results

for different combinations of 𝜏 and 𝑢. Here, the Y-Axis denotes

until which upper bound of error probability ProMACs guarantee

higher security levels than truncation to 𝜏 bits (at identical cost).

We observe that with increased Area of Dependency 𝑢 the bound-

ary drops: the reason of course is that resynchronization requires

the verification of 𝑢 messages, so increasing packet loss has more

severe effects on schemes with a large Area of Dependency. The

results drop with increasing 𝜏 , because there is no advantage in

continuing to enlarge the Area of Dependency as the maximum

achievable security level is bounded by the length of the state/key.

Packet loss studies of current wireless transmission standards,

e.g. 802.15.4 and 802.11, show that packet loss in realistic scenarios

can almost be neglected, being at or around 0% in general cases, and

rise to under < 10% even in real-time scenarios [55, 56]. ProMACs

can be concluded to reach superior effective security at identical

cost in all realistic scenarios.

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

221

6.4 Computation, Energy, Storage and Latency
We finally assess computational and storage overhead and theoreti-

cal gains.

Computation. Since Whips uses two separate PRFs for the calcu-

lation of the state update and the tag generation, it inherently adds

computational overhead. Consider the aforementioned HMAC as

underlying PRF, the usage ofWhips adds another call this primitive.

By taking the additional state to be hashed into account, the

computation changes as follows: The internal state of 168 Bytes

(cmp. Sec. 5.4) in the robot control scenario is assumed to be larger

than payloadmessages. Thus, wemeasured execution of the HMAC-

SHA256 for the 15 Byte messages compared to HMAC-SHA512

needed for Whips Further, we measured the execution time of the

second PRF call on the state, i.e. HMAC-SHA512 of the 168 Bytes

substate. All experiments were repeated 1.000.000 times on current

hardware (Intel i5 at 2.3GHz).

By employing a modern hash function, SHA3-512, the execution

of the first call was equal for SHA3-512 and SHA3-256, with 5.2 𝜇𝑠

(𝜎 = 0.33 𝜇𝑠). The subsequent PRF call generating the final tag took

6.1 𝜇𝑠 (𝜎 = 0.31 𝜇𝑠).

Hence, we conclude that although we are adding a second PRF

call, the absolute computational overhead in terms of computation

time for the proposed scheme can be considered negligible.

Storage. In terms of required storage, our solution is lightweight

and very easy to integrate into the intended use cases. Assuming the

aforementioned state of 168𝐵𝑦𝑡𝑒𝑠 and a large Area of Dependency

of 20,Whips requires 3.4𝑘𝐵 state storage. This can be handled very

well, even by constrained LoRaWAN sensors which, controlled by

STM32L4 chips usually, have 40 to 320𝑘𝐵 RAM available [1].

Energy. Energy overhead is especially relevant for battery-powered
devices. Considering the Tmote Sky, the radio unit consumes an

order of magnitude more power than the micro controller, at around

4.762𝑚𝐽 for PHY access and ≈ 1 𝜇𝐽 for each transmitted Byte [16].

Potential energy savings ofWhips due to reduced transmission

cost range between 21% for 128-bit tags, 31% for 64-bit tags, and

as much as 37% for 32-bit tags in the robot use case, as described

above. Such gains and the avoidance of retransmissions through

resynchronization would directly reduce battery drain, and hence

extend the lifetime of motes.

Latency. Considering the robot control use case, even transmis-

sion of a normal 20 Byte MAC at 250kbps yields a payload size

of only 10 Bytes, ignoring all headers, to achieve the 1𝑚𝑠 delay

requirement with 802.15.4. Applying Whips, this payload size is al-

most tripled to 27 Bytes, or: considering a message size of 15 Bytes,

a 32-bit tag size allows transmission within .6𝑚𝑠 , at the same or

higher level of security.

Finally, we note that Whips can be used as drop in replacements

for existing MAC schemes.

7 SUMMARY
In this paper we tackle the challenge of improving the performance

of integrity checking streamed messages, directly upon reception.

We introduce the concept of progressive MACs, or ProMACs, to

provide security for drone and robot control, distributed control

loops in Tactile Internet applications, as well as communication and

storage in resource restricted environments. ProMACs integrate the

concepts of truncation for performance and state-chaining for in-

creased security while simultaneously exposing inherent resynchro-

nization capabilities. We introduce a unique state update function

that facilitates progressive verification of a message upon reception

of subsequent tags. The combination allows to significantly reduce

overhead while maintaining high levels of security and offering

resynchronization.

We present a new construction that realizes ProMACs. Within

the messages stream, this scheme constructs a tightly bound trust

chain over the internal states while only transmitting a short tag,

which allows for efficient transmission like truncated MACs, but

guarantees security at the same level as full length MACs. By intro-

ducing flexibility regarding the number of incorporated previous

states through the Area of Dependency, we allow for the resyn-

chronization after verification errors or packet loss. Here, the Area

of Dependency 𝑢 does not cover all preceding messages, but only

those that fall into a sliding window over the stream, as defined

by a system parameter. This facilitates resynchronization after 𝑢

messages have been verified subsequent to an error.

The presented ProMAC construction is suitable to directly re-

place current MAC schemes. Especially as replacement for short-

ened tag systems, this delivers the same performance with signifi-

cantly increased security.

We formally define the construction and prove its respective

security and the security levels it can guarantee.

It is worth noting that the formalization of ProMACs extends

the current MAC notion by compromising between the different

types of statefulness: Our notion covers classical MACs as well as

the tight statefulness of duplex based constructions by setting the

Area of Dependency respectively.

Finally, we conducted an extensive empirical evaluation demon-

strating the applicability of the construction, the performance gains

for realistic scenarios, and the effective security levels that are

achieved under various packet error probabilities. Thus we show

that the ProMACs satisfy all requirements of the described use cases.

In continuation of this work, we currently incorporate the Pro-

MAC design in its presented realization into existing systems as a

drop in replacement. Thereby, the impact of ProMACs on the re-

spective use cases can be further evaluated and the corresponding

applications can be provided with effective integrity protection.

We also plan further studies on the inherent semantics of the

realized security levels, ultimately providing interpretations in var-

ious contexts. This will give a more concise meaning to the current

confidence into the integrity of received packets and allow for the

development of suitable reactions.

ACKNOWLEDGMENTS
This work is partly supported by the German Research Foundation

(DFG) in the EXC 2050/1 “CeTI” – ID 390696704. We thank Yannic

Ahrens for extensive support with our experimental setup and

implementation. We further like to thank the reviewers for their

helpful and constructive feedback.

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

222

REFERENCES
[1] [n.d.]. STM32L4 - ARM Cortex-M4 ultra-low-power MCUs - STMicroelectronics.

https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html

[2] Ferran Adelantado, Xavier Vilajosana, Pere Tuset-Peiro, Borja Martinez, Joan

Melia-Segui, and ThomasWatteyne. 2017. Understanding the limits of LoRaWAN.

IEEE Communications Magazine 55, 9 (2017).
[3] C. Bachhuber, E. Steinbach, M. Freundl, and M. Reisslein. 2018. On the minimiza-

tion of glass-to-glass and glass-to-algorithm delay in video communication. IEEE
Transactions on Multimedia (2018).

[4] M. Bellare, R. Canetti, and H. Krawczyk. 1996. Keying Hash Functions forMessage

Authentication. In CRYPTO. 1–15.
[5] Mihir Bellare, Oded Goldreich, and Anton Mityagin. 2004. The Power of Verifica-

tion Queries in Message Authentication and Authenticated Encryption. Cryptol-

ogy ePrint Archive, Report 2004/309. https://eprint.iacr.org/2004/309.

[6] M. Bellare, R. Guérin, and P. Rogaway. 1995. XOR MACs: New Methods for

Message Authentication Using Finite Pseudorandom Functions. In CRYPT0.
[7] Mihir Bellare, Joe Kilian, and Phillip Rogaway. 2000. The Security of the Cipher

Block Chaining Message Authentication Code. J. Comput. System Sci. 61, 3 (Dec.
2000), 362–399. https://doi.org/10.1006/jcss.1999.1694

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2011. Du-

plexing the sponge: single-pass authenticated encryption and other applications.

In International Workshop on Selected Areas in Cryptography. Springer, 320–337.
[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2013.

Keccak. In Annual international conference on the theory and applications of
cryptographic techniques. Springer, 313–314.

[10] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. 1999. UMAC: Fast

and Secure Message Authentication. In CRYPTO. 216–233.
[11] J. Black and P. Rogaway. 2002. A Block-Cipher Mode of Operation for Paralleliz-

able Message Authentication. In EUROCRYPT.
[12] Colin Boyd, Britta Hale, Stig Frode Mjølsnes, and Douglas Stebila. 2015. From

Stateless to Stateful: Generic Authentication and Authenticated Encryption Con-
structions with Application to TLS. Technical Report 1150. https://eprint.iacr.org/

2015/1150

[13] Ran Canetti and Hugo Krawczyk. 2001. Analysis of Key-Exchange Protocols and

Their Use for Building Secure Channels. InAdvances in Cryptology — EUROCRYPT
2001 (Lecture Notes in Computer Science), Birgit Pfitzmann (Ed.). Springer Berlin

Heidelberg, 453–474.

[14] Y. Challal, H. Bettahar, and A. Bouabdallah. 2004. A2 Cast: An Adaptive Source

Authentication Protocol for Multicast Streams. In Proceedings of the ISCC.
[15] Y. Challal, A. Bouabdallah, and Y. Hinard. 2005. RLH: Receiver Driven Layered

Hash Chaining for Multicast Data Origin Authentification. Computer Communi-
cations (2005).

[16] Salar Chamanian, Sajjad Baghaee, Hasan Ulusan, Özge Zorlu, Haluk Külah,

and Elif Uysal-Biyikoglu. 2014. Powering-up wireless sensor nodes utilizing

rechargeable batteries and an electromagnetic vibration energy harvesting sys-

tem. Energies 7, 10 (2014), 6323–6339.
[17] Joan Daemen, Seth Hoffert, G Van Assche, and R Van Keer. 2018. The design of

Xoodoo and Xoofff. (2018).

[18] Oliver Eikemeier, Marc Fischlin, Jens-Fabian Götzmann, Anja Lehmann, Do-

minique Schröder, Peter Schröder, and Daniel Wagner. 2010. History-free aggre-

gate message authentication codes. In International Conference on Security and
Cryptography for Networks. Springer, 309–328.

[19] ETSI Technical Committee on Electromagnetic compatibility and Radio spectrum

Matters. 2011. Technical characteristics for SRD equipment for wireless industrial
applications using technologies different from Ultra-Wide Band (UWB). Technical
Report 102 889-2.

[20] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson.

2015. Data Is a Stream: Security of Stream-Based Channels. In Advances in
Cryptology – CRYPTO 2015 (LNCS). Springer, 545–564.

[21] S. Frankel and H. Herbert. 2003. The AES-XCBC-MAC-96 Algorithm and Its Use

With IPsec. RFC 3566.

[22] A. Frotzscher et al. 2014. Requirements and current solutions of wireless com-

munication in industrial automation. In IEEE International Conference on Com-
munications (ICC).

[23] R. Gennaro and P. Rohatgi. 1997. How to Sign Digital Streams. In Advances in
Cryptology — CRYPTO. 180–197.

[24] Wireless Personal Area Network Working Group. 2016. 802.15.4 - Standard for
Low-Rate Wireless Networks. IEEE.

[25] Shay Gueron. 2016. Memory encryption for general-purpose processors. IEEE
Security & Privacy 14, 6 (2016).

[26] Mike Hamburg. 2017. The STROBE protocol framework. IACR Cryptology ePrint
Archive 2017 (2017).

[27] T. Iwata and K. Kurosawa. 2003. Stronger Security Bounds for OMAC, TMAC,

and XCBC. In INDOCRYPT. 402–415.
[28] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. 2011. On the Security

of TLS-DHE in the Standard Model. Technical Report 219. https://eprint.iacr.org/

2011/219

[29] Jonathan Katz and Andrew Y Lindell. 2008. Aggregate message authentication

codes. In Topics in Cryptology–CT-RSA 2008. Springer, 155–169.
[30] Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography

(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman &

Hall/CRC.

[31] J. Kelsey, S-J Change, and R. Perlner. 2016. SHA-3 Derived Functions: cSHAKE,
KMAC, TupleHash and ParallelHash. Number NIST SP 800-185. National Institute

of Standards and Technology.

[32] Tadayoshi Kohno, Adriana Palacio, and John Black. 2003. Building Secure
Cryptographic Transforms, or How to Encrypt and MAC. Technical Report 177.
https://eprint.iacr.org/2003/177

[33] Vladimir Kolesnikov, Wonsuck Lee, and Junhee Hong. 2011. MAC aggregation

resilient to DoS attacks. In 2011 IEEE International Conference on Smart Grid
Communications (SmartGridComm). IEEE, 226–231.

[34] A. Konstantinos, X. Xu, E. Steinbach, T. Mahmoodi, and M. Dohler. 2018. Towards

haptic communications over the 5G Tactile Internet. IEEE Communications
Surveys and Tutorials (2018).

[35] H. Krawczyk, M. Bellare, and R. Canetti. 1997. HMAC: Keyed-Hashing for

Message Authentication. RFC 2104. Updated by RFC 6151.

[36] C. Madson and R. Glenn. 1998. The Use of HMAC-MD5-96 within ESP and AH.

RFC 2403.

[37] C. Madson and R. Glenn. 1998. The Use of HMAC-SHA-1-96 within ESP and AH.

RFC 2404.

[38] D. McGrew and E. Rescorla. 2010. Datagram Transport Layer Security (DTLS)

Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP).

RFC 5764.

[39] S. Moriam, E. Franz, P. Walther, A. Kumar, T. Strufe, and G Fettweis. 2018. Pro-

tecting Communication in Many-Core Systems against Active Attackers. In

Proceedings of the Great Lakes Symposium on VLSI. 45–50.
[40] S. Myneni and D. Huang. 2010. IEEE 802.11 Wireless LAN Control Frame Protec-

tion. In IEEE Consumer Communications and Networking Conference.
[41] National Institute of Standards and Technology. 2005. NIST special publication

800-38B, Recommendation for block cipher modes of operation: The CMAC mode
for authentication. US Dept. of Commerce.

[42] National Institute of Standards and Technology. 2008. FIPS 186-4, Digital Signature
Standard (DSS). US Dept. of Commerce.

[43] National Institute of Standards and Technology. 2008. FIPS 198-1, The Keyed-Hash
Message Authentication Code (HMAC). US Dept. of Commerce.

[44] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. 2000. Efficient Authentication

and Signing of Multicast Streams over Lossy Channels. In Proceedings of IEEE
Security and Privacy. 56–73.

[45] D. E. Phillips, M.M.Moazzami, G. Xing, and J. M. Lees. 2017. A Sensor Network for

Real-Time Volcano Tomography: SystemDesign andDeployment. In International
Conference on Computer Communication and Networks (ICCCN). 1–9.

[46] Phillip Rogaway and Yusi Zhang. 2018. Simplifying Game-Based Definitions. In

Advances in Cryptology – CRYPTO 2018 (Lecture Notes in Computer Science), Hovav
Shacham and Alexandra Boldyreva (Eds.). Springer International Publishing, 3–

32.

[47] Markku-Juhani O Saarinen. 2014. Beyond modes: Building a secure record

protocol from a cryptographic sponge permutation. In Cryptographers’ Track at
the RSA Conference. Springer, 270–285.

[48] Guntram Scheible, Dacfey Dzung, Jan Endresen, and Jan Erik Frey. 2007. Un-

plugged But ConnectedDesign and Implementation of a TrulyWireless Real-Time

Sensor/Actuator Interface. Industrial Electronics Magazine, IEEE 1 (02 2007), 25 –

34. https://doi.org/10.1109/MIE.2007.901481

[49] J. Schmandt, A. T. Sherman, and N. Banerjee. 2017. Mini-MAC: Raising the bar for

vehicular security with a lightweight message authentication protocol. Vehicular
Communications (2017), 188 – 196.

[50] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuermann. 2011. Car2X

Communication: Securing the Last Meter - A Cost-Effective Approach for Ensur-

ing Trust in Car2X Applications Using In-Vehicle Symmetric Cryptography. In

2011 IEEE Vehicular Technology Conference (VTC). 1–5.
[51] JH. Song, R. Poovendran, and J. Lee. 2006. The AES-CMAC-96 Algorithm and Its

Use with IPsec. RFC 4494.

[52] E. Steinbach, S. Hirche, M. Ernst, F. Brandi, R. Chaudhari, J. Kammerl, and I.

Vittorias. 2012. Haptic Communications. Proc. IEEE (2012).

[53] JTC 1/SC 27 IT Security techniques. 2011. Information technology- Security
techniques - Message Authentication Codes (MACs)- Part 1: Mechanisms using a
block cipher. ISO/IEC.

[54] JTC 1/SC 27 IT Security techniques. 2011. Information technology- Security
techniques - Message Authentication Codes (MACs)- Part 2: Mechanisms using a
dedicated hash function. ISO/IEC.

[55] Gilles Thonet, Patrick Allard-Jacquin, and Pierre Colle. 2008. Zigbee-wifi coexis-

tence. Schneider Electric White Paper and Test Report (2008).
[56] Yi-Hung Wei, Quan Leng, Song Han, Aloysius K Mok, Wenlong Zhang, and

Masayoshi Tomizuka. 2013. RT-WiFi: Real-time high-speed communication

protocol for wireless cyber-physical control applications. In 2013 IEEE 34th Real-
Time Systems Symposium.

Session 1D: Applied Cryptography and Cryptanalysis CCS '20, November 9–13, 2020, Virtual Event, USA

223

https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
https://eprint.iacr.org/2004/309
https://doi.org/10.1006/jcss.1999.1694
https://eprint.iacr.org/2015/1150
https://eprint.iacr.org/2015/1150
https://eprint.iacr.org/2011/219
https://eprint.iacr.org/2011/219
https://eprint.iacr.org/2003/177
https://doi.org/10.1109/MIE.2007.901481

	Abstract
	1 Introduction
	2 Requirements and Related Work
	2.1 Requirements
	2.2 Related Work

	3 Preliminaries
	3.1 Message Authentication Codes
	3.2 Pseudorandom Functions

	4 Progressive MACs
	4.1 Overview
	4.2 Formal Definition
	4.3 Correctness and Soundness
	4.4 Relation to Classical MACs and Duplex-based Constructions

	5 Whips
	5.1 Specification
	5.2 Design Rationale
	5.3 Proof of Security
	5.4 Parameter Selection

	6 Performance Evaluation
	6.1 Evaluation Scenarios and Setups
	6.2 Empirical Performance Measurements
	6.3 Achieved Security Level
	6.4 Computation, Energy, Storage and Latency

	7 Summary
	Acknowledgments
	References

