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Abstract—When working with joint collections of confidential
data from multiple sources, e.g., in cloud-based multi-party
computation scenarios, the ownership relation between data
providers and their inputs itself is confidential information.
Protecting data providers’ privacy desires a function for secretly
shuffling the data collection. We present the first efficient secure
multi-party computation protocol for secret shuffling in scenarios
with a central server. Based on a novel approach to random
index distribution, our solution enables the randomization of the
order of a sequence of encrypted data such that no observer
can map between elements of the original sequence and the
shuffled sequence with probability better than guessing. It allows
for shuffling data encrypted under an additively homomorphic
cryptosystem with constant round complexity and linear com-
putational complexity. Being a general-purpose protocol, it is of
relevance for a variety of practical use cases.

Index Terms—Privacy-preserving computation, secure multi-
party computation, homomorphic encryption, secret shuffling

I. INTRODUCTION

In an industrial context, security against semi-honest ad-
versaries [26] is a valid assumption as companies typically
have a financial and legal interest in the correct execution of
processes. Proactive misbehaviour or negligent data handling
could lead to a loss of reputation or legal consequences,
such as those imposed by the European Union’s General Data
Protection Regulation (GDPR) [30].

To make well-informed business decisions, companies need
to determine their strengths and weaknesses. One widely-used
measure is cross-company benchmarking. In cross-company
benchmarking, companies compare their key performance
indicators (KPI), e.g., return on investment, to those of other
companies of the same industry. As results, they obtain sta-
tistical measures, such as quartiles and mean. To compute
rank-based statistical measures like quartiles, sorting KPIs
typically is an important aspect of benchmarking. However,
as the companies’ performances are confidential, no company
should learn another company’s KPIs. Instead, benchmark
results should only help them determine how they perform
relatively to their overall peer group. To ensure that, bench-
marks typically are performed by trusted third parties (TTP),
neutral companies that take the companies’ KPIs in plaintext

and centrally compute the statistical measures. However, using
a TTP requires trust. On the one hand, companies need to
trust that the TTP does not proactively abuse the companies’
private KPIs. As described above, this is a valid assumption
as the neutral party has a financial and legal interest in honest
behavior. However, on the other hand, they need to trust
that the TTP implements sufficient security measures that
prevent data breaches. This is an important drawback of the
TTP approach as data breaches might cost companies their
competitive advantage or reputation.

Alternatively, benchmarking could be performed via secure
multi-party computation (MPC) [15]. An MPC protocol em-
ulates a TTP by having the parties, e.g., companies, jointly
evaluate some public function, e.g., quartile computation, over
their inputs. Most importantly, those inputs are kept private,
e.g., processed in encrypted form. Such a protocol is secure in
the sense that parties only learn their own inputs, their outputs,
and what can be inferred from that. Hence, confidential KPIs
are protected from any internal and external observer, enabling
privacy-preserving benchmarking. We restrict our consider-
ations to MPC scenarios where n parties each contribute
confidential inputs and jointly evaluate the target function with
a service provider. We refer to the data providers as players
and require the service provider to be a single, central instance
(see Fig. 1).

As the core of a benchmarking MPC protocol, encrypted
KPIs need to be sorted according to their underlying plaintexts
in a privacy-preserving fashion. Such oblivious sorting can be
done via sorting networks in n log n comparisons orchestrated
by the service provider as described in [21]. However, this
would cause the service provider to learn the order of the
confidential KPIs, that is, how a particular company performs
relatively to another particular company. Even if the service
provider is assumed to not misuse this information proactively,
a data breach could leak this confidential performance infor-
mation.

To reduce the risk of benchmarks leaking confidential data
and relative performance information, an efficient privacy-
preserving benchmarking protocol based on MPC should
ensure anonymity in the sense that no observer can infer
ownership relations between companies and their encrypted
KPIs. This can be done by secretly shuffling the encrypted978-1-7281-8086-1/20/$31.00 ©2020 IEEE
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Fig. 1: Network of One Service Provider and Four Players

KPIs prior to benchmarking. We refer to a secret shuffle
as a function that randomizes the order of a sequence of
encrypted inputs such that no observer can map elements
in the original sequence to their corresponding elements in
the shuffled sequence with probability better than guessing.
Preventing such a mapping also implies a need for modifying
the ciphertexts without affecting the underlying plaintexts.
Using shuffled KPI sequences as basis for benchmarking
prevents leakage of ownership relations during KPI sorting
later in the benchmarking process.

Besides privacy-preserving benchmarking, our protocol can
be applied as a pre-processing step to any scenario where n
players send encrypted inputs to a central service provider,
e.g., cloud service, but do not want it to learn which player
provided which input. This includes anonymous surveys, polls,
and voting, where shuffling hides ownership relations by
randomly rearranging encrypted inputs. Before we present
our shuffling protocol in Section IV, we introduce required
definitions and preliminaries and give an overview of related
work. We conclude this paper with approaches to future work.

II. PRELIMINARIES

We restrict our considerations to asymmetric cryptosystems,
i.e., a tuple CS = (G,E,D) consisting of three polynomial-
time algorithms. The probabilistic key-generation algorithm G
takes as input a security parameter κ and outputs a key pair
(pk, sk) consisting of a public encryption key pk and a secret
decryption key sk. The probabilistic encryption algorithm E
takes as input a plaintext x ∈ M and pk and outputs the
ciphertext y = E(x, pk) ∈ C. M and C denote the plaintext
and ciphertext space, respectively. The decryption algorithm
D takes as input a ciphertext y ∈ C and sk and outputs
the plaintext x = D(y, sk) ∈ M. For simplification, we
denote the encryption of x ∈ Mi under a cryptosystem
CSi = (Gi, Ei, Di) for pki by y = Ei(x) and the decryption
of y ∈ Ci for ski by x = Di(y).

Homomorphic cryptosystems, such as RSA [31], Pail-
lier’s [28], and BGV [5], allow for computations on ci-
phertexts. A cryptosystem CS is homomorphic if applying
an operation ◦ to ciphertexts E(x1) and E(x2) yields the
ciphertext E(y) of the result y = x1 ∗ x2 of a corresponding
homomorphic operation ∗ applied to the plaintexts x1 and
x2 [22]. That is, E(x1) ◦ E(x2) = E(x1 ∗ x2). We restrict
our considerations to cryptosystems with an additive homo-
morphism enabling addition of the underlying plaintexts as
depicted in (1) and (2), such as Paillier’s cryptosystem [28].

D(E(x1) · E(x2)) = x1 + x2 (1)

D(E(x1)
x2) = x1 · x2 (2)

That is, multiplication of ciphertexts encrypted under the same
key pk yields an encryption of the sum of the underlying plain-
texts, encrypted under pk. This also enables multiplication of
an encrypted value by a plaintext value via exponentiation.

Paillier’s cryptosystem allows for rerandomization [28].
Given pk and a ciphertext E(x) of a plaintext x, rerandom-
ization is an operation that computes a valid ciphertext E′(x)
without decryption. With high probability, E(x) 6= E′(x) is
ensured such that the output distributions of rerandomization
and encryption are computationally indistinguishable [14]. For
Paillier’s cryptosystem, it can be performed by multiplication
with the encrypted identity element 0 as depicted in (3) [28].

E′(x) = E(x) · E(0) (3)

A hash function h(·) is a function that, for arbitrarily long
inputs x, computes outputs h(x) of fixed length [20]. It is easy
to compute h(x), which we refer to as a hash. A hash function
is cryptographic if it provides collision-resistance, meaning
that it is computationally infeasible to find two hashes h(x) =
h(x′) such that x 6= x′ [20]. This also guarantees that it is
computationally infeasible to compute x given only h(x) [20].

We define a sequence S as an enumeration of elements si
that are arranged in a particular order. Multiple si can have the
same value. The number of si in S is referred to as its length.
We only use finite sequences of fixed length n and denote them
either by S = (s1, ..., sn) or by S = (..., si, ...) depending on
whether we want to emphasize the elements’ order or their
form. Given S = (s1, ..., sn), a random permutation π : S →
S′ yields the permuted sequence S′ = (..., si, ...|si ∈ S)
containing the same n elements as S but arranged in a random
order. We denote the position of si in S′ permuted via π by
π(si). See [20] for details on (pseudo)random permutations.

A function ϕ(m) is negligible in m if for every positive
polynomial p(m) there is an m0 ∈ N such that for every
m > m0, ϕ(m) < 1

p(m) applies [20]. Let
{
X1
m

}
m∈N

and
{
X2
m

}
m∈N be two sets of random variables. If for a

probabilistic polynomial-time algorithm A the advantage

ε =
∣∣Pr [A (

X1
m, 1

m
)
= 1

]
− Pr

[
A
(
X2
m, 1

m
)
= 1

]∣∣ (4)

is negligible in m, the two sets are computationally indistin-
guishable [20].

In [18], a shuffle of a sequence of ciphertexts is defined
as a sequence of different ciphertexts of the same plaintexts,
arranged in a permuted order. We additionally require the
permutation to be secret and define a secret shuffle as follows.

Definition 1 (Secret Shuffle). Given a sequence of ciphertexts
X = (..., E(xi), ...) with 1 ≤ i ≤ n. A secret shuffle
S(·) is a function that, for input X , yields a sequence
X = (..., E′(xπ(i)), ...) such that the ciphertexts E′(x1) 6=
E(x1), ..., E

′(xn) 6= E(xn) encrypt pairwise equal plaintexts
x1, ..., xn. The order of the elements in X is randomly per-
muted via a random permutation π. No participant can learn
more than negligibly much information about π.
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III. RELATED WORK

A. Approaches with Additional (Neutral) Instances

In [7], Chaum introduces mix networks, a protocol that
enables anonymity and unlinkability of messages to their
senders at the cost of additional computational overhead. Mix
networks involve a sequence of servers, called mixes, which
receive a set of messages, shuffle, and forward them to the
next mix [18]. Unlinkability is guaranteed if at least one mix
is honest [18]. There are two kinds of shuffles: decryption and
re-encryption shuffles [1]. In decryption shuffles, the messages
are layered ciphertexts. Each mix removes one layer of encryp-
tion from each message and sorts the resulting plaintexts. In
re-encryption shuffles, the mixes rerandomize and permute the
messages via a randomly chosen permutation. A re-encryption
mix network that ensures simplified key management based
on universal re-encryption is given in [17]. In [32], the first
mix network that is universally composable and efficient
independent of the number of mixes is presented. The first
efficient non-interactive zero-knowledge proof for proving that
a mix shuffled correctly is proposed in [19]. A description of
how the permutation used by a mix can be constructed by
multiple parties is given in [10].

Due to several drawbacks, mix networks do not properly
ensure unlinkability between players and their inputs in our
target scenario. Primarily, mixes need to be provided by
different, independent parties [29]. This cannot be guaranteed
in scenarios with a single, central service provider. The same
applies to Riffle [24], an alternative to mix networks.

B. Approaches Based on Trusted Hardware

Alternatively, unlinkability can be achieved by shuffling
in trusted hardware, e.g., Intel Software Guard Extensions
(SGX) [8]. Generating and applying the random permutation
as well as rerandomization can be done inside trusted hardware
on the service-provider side. Such an approach is described
in [13] for database access pattern obfuscation. In [11], an ap-
proach with a trusted unit that performs shuffling of encrypted
data with limited private memory is given. An architecture
for privacy-preserving online analysis of client data based on
trusted hardware is presented in [3]. In setups with a trusted
CPU but no trusted memory, oblivious RAM (ORAM) can
ensure that untrustworthy RAM does not leak confidential
information [16]. However, these approaches imply different
trust assumptions and relations such as trust in the manufac-
turing of the trusted hardware. Therefore, they are not suitable
for our scenario with distrusting participants.

C. Approaches Based on Secure Multi-party Computation

One approach to secure multi-party computation is secret
sharing. In [25], three shuffling MPC protocols are proposed
for the Sharemind secure computation platform, focusing on
low communication and round complexity. In Sharemind,
computation is done by three independent parties [4]. This
does not fit our scenario with a single, central service provider.
Another shuffling protocol based on secret sharing is presented
in [27]. However, it is designed for decentralized settings.

Secure multi-party computation can also be based on homo-
morphic encryption. In [6], such an MPC protocol for shuffling
data in a setting of multiple data providers and one data miner
is proposed. It emulates a mix network in the sense that each
data provider itself acts as a mix. Hence, it does not require
independent mix servers. With its quadratic computational and
linear round complexity, it does not scale well.

A shuffling protocol that combines both secret sharing and
homomorphic encryption is proposed in [23]. It is used as
a subprotocol to anonymizes players’ inputs prior to decen-
tralized sorting and benchmarking. The ownership relation is
concealed in a multi-round protocol where mix networks are
used to ensure anonymity. Hence, it has drawbacks similar
to those of mix networks. A constant-round benchmarking
protocol for centralized scenarios based on homomorphic
encryption is presented in [21]. Instead of sorting the full list of
encrypted KPIs, it computes in a privacy-preserving fashion
for each input the number of inputs that are smaller, such
that no participant learns any KPI’s rank. Even though this
approach does not require shuffling to prevent leaking KPIs’
ranks, it comes at the cost of quadratic computational and
communication complexity, which implies poor scalability.

IV. SECRET SHUFFLING PROTOCOL

A. Adversary Model

We design our protocol to be secure against any semi-honest
adversary A [26] that corrupts either an arbitrary number of
players or the service provider. That is, we exclude collusion
between any player and the service provider, like the related
work. Our shuffling protocol ensures input privacy. Hence, A
does not learn anything about non-corrupted players’ secret
inputs. Most importantly, we ensure that no such A is able
to map non-corrupted players’ inputs to their equivalents in
the shuffled sequence generated by the shuffling protocol.
In summary, an adversary corrupting either any subset of
the players or the service provider can neither determine the
ownership relation between non-corrupted players and their
inputs nor learn their secret inputs.

B. Prerequisites

In the description of our protocol SHUFFLE, we use the
indices 1 ≤ i, j ≤ n for players Pi and Pj , respectively, as
well as their inputs xi (xj), random values ri (rj), etc. We
denote concatenation by “||”.

We assume two instances CS1 and CS2 of the Damgård-
Jurik cryptosystem [9], like Paillier’s [28]. The public keys
pk1 and pk2 are known to the service provider PS and the
players Pi. The secret key sk1 is known only to the players
and could be generated and distributed via Diffie-Hellman key
exchange [12]. The secret key sk2 is only known to PS . We
require the plaintext space M2 of CS2 to be a subset of the
plaintext space M1 of CS1, i.e.,

M2 ⊆M1. (5)

This ensures that any message that can be encrypted with pk2
can also be encrypted with pk1.
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TABLE I: Secret Shuffling Protocol with Step Labels and Computations

Step Computation

1.1 Pi → PS : E1(xi)

1.2 E1(r1i )

2.1 PS → Pi: R′
1 = (..., E1(r′1i ) = E1(r1π1(i)

), ...)

2.2 X′ = (..., E1(x′i + r2i ) = E1(xπ2(i) + r2i ) = E1(xπ2(i)) · E1(r2i ), ...)

2.3 R2 = (..., E2(r2i ), ...)

2.4 r1S

2.5 Pi: H = (..., hj = h(r′1j ||r1S ) = h(D1(E1(r′1j ))||r1S ), ...)
2.6 ρi = position(H′ = sort(H), hi)

2.7 Pi → PS : E′
1(x

′
ρi

+ r2ρi ) = E1(x′ρi + r2ρi + 0) = E1(x′ρi + r2ρi ) · E1(0)

2.8 E2(r2ρi + r3i ) = E2(r2ρi ) · E2(r3i )

2.9 E1(r3i )

2.10 PS : X = (..., E′
1(x

′
ρi
) = E′

1(x
′
ρi

+ r2ρi ) · E1((−1) ·D2(E2(r2ρi + r3i ))) · E1(r3i ), ...)

We require two random permutations π1 and π2, a cryp-
tographic hash function h(·), and two functions sort(S) and
position(S, si). The permutations π1 and π2 are both chosen
by and only known to PS . The hashes of h(·) are assumed to
be uniformly distributed among the domain dom(h(·)). Given
a sequence S = (s1, ..., sn), sort(S) outputs a sequence S′

that contains s1, ..., sn in ascending order, i.e., S′ = (s′1 ≤
s′2 ≤ · · · ≤ s′n | s′i ∈ S). The function position(S, si) outputs
the position of si in S.

Moreover, we assume pairwise secure, i.e., secret and au-
thentic, channels between each player and the service provider,
for instance established via Transport Layer Security (TLS).

C. Protocol Specification

Our protocol is given in Table I. It runs in two communi-
cation rounds: one that collects the players’ inputs (steps 1.1-
1.2) and one that shuffles them (steps 2.1-2.10). As in Defi-
nition 1, for a protocol to secretly shuffle a sequence, it has
to permute the order of the entries by a random permutation
π. Furthermore, it has to modify the ciphertexts of the secret
inputs such that π cannot be reconstructed by simply looking
at the rearranged ciphertexts. Permutation is achieved by a
novel approach to random index distribution where each player
randomly but uniquely selects some player’s encrypted input
from the full list of input ciphertexts. Ciphertext modification
is done by rerandomizing the selected ciphertext (see Equa-
tion (3)). In detail, this is done as follows.

In step 1.1, each player Pi takes its private input xi that
is supposed to be shuffled, encrypts it under CS1, and sends
it to the service provider PS . Then, in step 1.2, each player
chooses a (presumably unique) random value r1i ∈ M1 that
will be used for random index distribution, encrypts it under
CS1, and sends it to PS . Hence, PS receives 2 · n ciphertexts
that it cannot decrypt, two from each player.

We denote the list of encrypted random values E1(r1i) by
R′

1. In step 2.1, PS permutes R′
1 by π1 and sends the permuted

list to the players. Permutation prevents the players from
learning which r1i was provided by which player. Similarly,
we denote the list of encrypted input values E1(xi) by X ′. In

step 2.2, PS permutes X ′ via π2, hides each plaintext xπ2(i)

by homomorphically adding a random value r2i ∈ M1 (see
Equation (1)), and sends X ′ to each player. Additive hiding
prevents the players from learning other players’ secret inputs.
In step 2.3, PS encrypts the random values r2i under CS2 and
sends the full list, denoted by R2, to the players. Then, PS
chooses a random value r1S ∈M1 and sends it to the players
in step 2.4. Hence, the players receive the same three lists
R′

1, X
′, R2 of n ciphertexts and the same random value r1S .

In step 2.5, each Pi decrypts the ciphertexts E1(r
′
1j ) ∈ R

′
1,

1 ≤ j ≤ n. If the values r′1j are not pairwise distinct,
each player aborts the protocol and notifies PS . Otherwise,
each player concatenates each resulting plaintext r′1j with the
random value r1S of PS and computes the n hashes hj of the
list H . Using r1S as a seed for h(·) prevents players Pi from
selecting a specific r1i in step 1.2 to obtain a desired hash hi,
which would eventually affect the randomness of the index
distribution. In step 2.6, each Pi sorts the list of hashes H
and obtains the sorted list H ′. For the hash hi = h(r′1i ||r1S )
corresponding to Pi’s random value r′1i , its position ρi in H ′

is the random index of Pi. Hence, each player computes an
individual, random index ρi that is unknown to PS and not
related to the rank of its input xi.

Given ρi, each player selects the ciphertext E1(x
′
ρi+r2ρi ) ∈

X ′, rerandomizes it, and sends it to PS in step 2.7. Reran-
domization prevents PS from learning which ciphertext was
selected. In step 2.8, Pi selects the encrypted random value
E2(r2ρi ) ∈ R2 of index ρi, additively hides the plaintext
by homomorphically adding a random value r3i , and sends
the resulting ciphertext to PS . This random value r3i is then
encrypted under CS1 and sent to PS in step 2.9. Hence, the
service provider receives three ciphertexts from each player.

In step 2.10, for each 1 ≤ i ≤ n, PS decrypts the ciphertext
E2(r2ρi + r3i) received in step 2.8, multiplies the resulting
plaintext with −1, and encrypts the product under cryptosys-
tem CS1. The resulting ciphertext is then multiplied with the
ciphertexts E1(x

′
ρi+r2ρi ) of step 2.7 and E1(r3i) of step 2.9.

Consequently, the random values r2i and r3i are eliminated,
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TABLE II: Service Provider’s Computational and Communi-
cation Complexity of the Protocol

Step Enc Dec Mult Message length

2.1 n · n · lC1

2.2 n n n · n · lC1

2.3 n n · n · lC2

2.4 n · lM1

2.10 n n 2 · n
Total 3 · n n 3 · n 2 · n2 · lC1

+ n2 · lC2
+ n · lM1

resulting in rerandomized ciphertexts χi = E1(x
′
ρi) ∈ X .

The order of the rerandomized ciphertexts χi of the input
values xi is determined by the input order of the values in
steps 2.7 to 2.9 as received via network. Every Pi sends
some Pj’s rerandomized, encrypted input, chosen based on its
random index ρi. The service provider cannot map between the
original input order and the order of X . Therefore, PS’s output
is a correctly shuffled list. We proof correctness in the ex-
tended version of this paper [2]. Furthermore, in a simulation-
based proof, we also show that our shuffling protocol is secure
in the semi-honest model by demonstrating that anything an
adversary A can learn during protocol execution can as well be
learned given only the inputs and outputs of the protocol [26].

V. PERFORMANCE EVALUATION

The performance evaluation of our protocol SHUFFLE is
twofold: We first investigate its asymptotic computational,
communication, and round complexity in a theoretical analy-
sis. Then, we examine its performance in an empirical analysis
and compare it to the performance of mix networks.

A. Asymptotic Complexity

1) Round Complexity: As depicted in Table I, the protocol
consists of two rounds and a total of twelve protocol steps.
Both values are independent of the number of players n.
Therefore, the round complexity is constant in n, i.e., O(1).

2) Computational Complexity: We investigate the number
of operations that need to be carried out by the service provider
and each player, respectively. We restrict our considerations
to the cryptographic operations encryption, decryption, and
ciphertext multiplication as they can be assumed to be the most
complex ones. Their numbers are given in the middle columns
of Tables II and III. The resulting asymptotic computational
complexity is O(n), i.e., linear in the number of players n,
for both the service provider and each player.

3) Communication Complexity: To determine the commu-
nication complexity of the protocol, we investigate the length
of the messages sent in each step of the protocol by the service
provider and each player, respectively. These are given in the
rightmost columns of Tables II and III. Here, lMi

and lCi
denote the maximum length of plaintexts in Mi and cipher-
texts in Ci, respectively. The total asymptotic communication
complexity per player is O(n), i.e., linear in the number of
players n. The service provider’s communication complexity

TABLE III: Each Player’s Computational and Communication
Complexity of the Protocol

Step Enc Dec Mult Message length

1.1 1 lC1

1.2 1 lC1

2.5 n

2.6
2.7 1 1 lC1

2.8 1 1 lC2

2.9 1 lC1

Total 5 n 2 4 · lC1
+ lC2

is O(n2), i.e., quadratic in the number of players n. Compared
to related work, such as [7], our protocol has higher asymptotic
communication complexity. However, we accept this loss as it
helps reduce the computational complexity asymptotically.

B. Empirical Performance

To investigate the practical performance of the protocol,
we implemented both the players’ and the service provider’s
part of the protocol and deployed them in a cloud-computing
setting. The service provider was implemented as a Java
HttpServlet and deployed in a cloud-computing instance with
96 CPUs and 384 GB RAM. To emulate sufficiently large
numbers of independent players, we implemented the players’
protocol steps in a Java HttpServlet and deployed the players in
a Kubernetes cluster based on a cloud-computing instance with
96 CPUs and 384 GB RAM. We instantiated one Kubernetes
node per player and provided each node with one CPU and
4 GB RAM, which compares to the minimum requirements
on a standard desktop computer. Therefore, we were able to
emulate up to 96 players. Service provider and players were
deployed in different data centers in two major European cities
with a distance of approximately 650 kilometers to ensure
a lifelike communication scenario. We used the additively
homomorphic Paillier cryptosystem for CS1 and CS2.

For comparison, we implemented a simple yet efficient re-
encryption mix network. Its construction is similar to the one
described in [17], but instead of the ElGamal cryptosystem
with universal re-encryption, we used the standard version
of Paillier’s cryptosystem. Re-encryption (rerandomization) is
performed given the public key of the players, which is a valid
approach as the senders, i.e., players, in the shuffling scenario
share the same key and the recipient, i.e., service provider, is
not supposed to decrypt the received confidential data. We
implemented the mixes as Java HttpServlets and deployed
them in a similar cloud-computing setting as above, running
each mix on an instance with 96 CPUs and 384 GB RAM. In
a cascade of mixes, each mix receives all the messages at the
same time in one batch, permutes and re-encrypts them, and
forwards the full batch to the next mix or the recipient. This
matches a communication setting where the service provider
has the mix network shuffle all the inputs once it received the
full list of inputs from the players.
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Fig. 2: Results of the Empirical Performance Analysis

Fig. 2a depicts the execution time t relatively to the number
of messages n for 1024-bit keys for our shuffling protocol
and for mix networks with cascades of three and five mixes,
respectively. Shuffling 96 inputs with our shuffling protocol
took 2.08 seconds while the mix networks performed shuffling
in 0.51 and 0.80 seconds, respectively. For 2048-bit keys,
shuffling 96 inputs took 9.69 seconds with our protocol and
2.71 and 4.53 seconds with mix networks (see Fig. 2b). For
both key lengths, the execution time of our shuffling protocol
grows linearly in the number of players. Most importantly,
the empirical results show that a mix network of five mixes
with appropriate key length is only 2.14 times faster than our
shuffling protocol. However, recall that to achieve this perfor-
mance, mix networks require multiple independent servers to
perform the mixing whereas our shuffling protocol requires
only a single server. Given the linear nature of re-encryption
mix networks, one can reasonably assume that our protocol
performs similar to a mix network of ten to eleven mixes.

The linear growth of the execution time of our shuffling
protocol indicates that the quadratic character of the commu-
nication complexity has minor impact on the overall runtime.
To further support this assumption, we investigated the ratio
of computation time to communication time (see Fig. 2c). For
growing n, the portion of the total runtime that is required for
computation shows logarithmic trend. Hence, the ratio barely
changes for large n. This implies that for large n, the com-
munication time and computation time grow proportionately
instead of disproportionately, as one could have expected from
their asymptotic complexities.

C. Summary

Our protocol has constant round complexity and linear
computational complexity. Our empirical performance analysis
shows that the execution time is linear in n. This implies that
the quadratic character of the communication complexity has
minor impact on the overall runtime. In this analysis, shuffling
96 secret inputs encrypted under a 2048 bits long Paillier key
took 9.69 seconds, which proves the practicability of our secret
shuffling protocol. Performing shuffling via a mix network of
five mixes takes roughly half as long. However, such a mix
network requires five independent powerful servers, instead

of a single powerful server. This indicates that our shuffling
protocol not only provides shuffling in centralized settings in
reasonable time but also has lower energy consumption and
causes lower cloud-computing costs.

VI. CONCLUSION

We present an efficient secure multi-party protocol for
shuffling encrypted data. It precludes any mapping between
ciphertexts in the unshuffled and the shuffled sequence with
probability better than guessing. We prove correctness of
our shuffling functionality and privacy of the confidential
inputs [2]. Key element of our contribution is a novel approach
to efficient random index distribution, which provides the
random, secret permutation. Our protocol has computational
complexity linear in the number of players as well as con-
stant round complexity. It shuffles 96 ciphertexts in 9.69
seconds for 2048 bit long keys. We show that the effect
of the communication complexity’s quadratic character on
the execution time is minor, ensuring good scalability. Our
protocol performs asymptotically better than previous MPC-
based shuffling approaches that focus on low communication
complexity but suffer from higher computational complexity,
which has negative impact on scalability. Furthermore, its
execution time is only 2.14 times that of a mix network of five
mixes but requires no additional, independent servers. This
not only enables use cases with centralized communication
scenarios but also causes lower cloud-computing costs. As a
general-purpose protocol, it can be a building block in a variety
of applications such as privacy-preserving benchmarking sys-
tems, anonymous surveys, polls, voting, and many more where
shuffling enables anonymity by hiding ownership relations.

VII. FUTURE WORK

The protocol’s applicability could be further improved by
reducing its communication complexity. This can be achieved
with a more efficient approach to obtaining the input ci-
phertexts from the service provider and selecting one of
unique, random index. Moreover, it could be modified to be
secure against malicious adversaries [26]. In more generic
scenarios, m encrypted inputs could be present on the service-
provider side prior to the protocol execution instead of being
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provided by the n players themselves. The players could then
shuffle these values. Further security analysis is necessary to
investigate the implications of setting n � m where players
generate multiple random indices and select and rerandomize
multiple ciphertexts at once. This would further decrease the
communication complexity and improve scalability.
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