
2PPS – Publish/Subscribe with Provable Privacy

Sarah Abdelwahab Gaballah
TU Darmstadt

gaballah@tk.tu-darmstadt.de

Christoph Coijanovic
Karlsruhe Institute of Technology

christoph.coijanovic@kit.edu

Thorsten Strufe
Karlsruhe Institute of Technology

thorsten.strufe@kit.edu

Max Mühlhäuser
TU Darmstadt

max@tk.tu-darmstadt.de

Abstract—Publish/Subscribe systems like Twitter and Reddit let
users communicate with many recipients without requiring prior
personal connections. The content that participants of these
systems publish and subscribe to is typically public, but they may
nevertheless wish to remain anonymous. While many existing
systems allow users to omit explicit identifiers, they do not
address the obvious privacy risks of being associated with content
that may contain a wide range of sensitive information.
We present 2PPS (Twice-Private Publish-Subscribe), the first
pub/sub protocol to deliver strong provable privacy protection
for both publishers and subscribers, leveraging Distributed
Point Function-based secret sharing for publishing and Private
Information Retrieval for subscribing. 2PPS does not require
trust in other clients and its privacy guarantees hold as long as
even a single honest server participant remains. Furthermore,
it is scalable and delivers latency suitable for microblogging
applications.
A prototype implementation of 2PPS can handle 100,000 con-
current active clients with 5 seconds end-to-end latency and
significantly lower bandwidth requirements than comparable
systems.
Index Terms—privacy, anonymity, publish/subscribe, private in-
formation retrieval

I. INTRODUCTION

Consider the immense popularity of services like Twitter,

Reddit, and Telegram. All can be classified as implementing

the Publish/Subscribe (pub/sub) messaging pattern: Messages

are published to certain topics (e.g., hashtags for Twitter or

channels for Telegram). Users can freely subscribe to topics

they are interested in and will receive corresponding messages.

The service acts as an intermediary broker between publisher

and subscribers and is responsible for managing subscriptions,

sorting received messages by topic, and forwarding them to

the intended subscribers.

One particularly interesting use of pub/sub systems is the

organization of volunteering, political involvement, and ac-

tivism. Pub/sub lends itself to this setting since it allows large

numbers of people to connect without having a prior personal

relationship. Protesters in Iraq, Hong Kong, and Belarus have

been using Telegram and FireChat for this purpose [1]–[3].

However, the use of conventional systems can leak valuable

metadata to an adversary:

This work was supported by funding of the German Research Foundation
(DFG), research grant 317688284 and by funding of the Helmholtz Associa-
tion (HGF) through the Competence Center for Applied Security Technology
(KASTEL)

• An activist who is found out to be publishing or subscrib-

ing to a regime-critical topic may be facing serious legal

consequences.

• If the regime finds out how many users are subscribed to

a critical topic, it can determine the size of the activists’

movement and deploy an overwhelming police force at

the next protest.

Telegram and FireChat do not protect this kind of metadata [4].

This is where our proposed protocol, 2PPS, comes in: It offers

strong provable privacy protection for both publishers and

subscribers in an open pub/sub setting. History shows that a

state-level adversary can have access to immense resources [5].

Thus, we aim to protect against an adversary who may not only

corrupt users and servers but also observe and interfere with

traffic globally. While the example of political activists impres-

sively motivates the need for private pub/sub communication,

it is not the only possible use for 2PPS. Service providers can

infer sensitive information such as health problems, financial

status, or sexual preferences by observing which topics a user

is active in.
At a high level, 2PPS reaches its goal as follows: The broker’s

functionality is distributed over multiple servers, where privacy

is ensured as long as at least one arbitrary server does not

collude with the adversary. While the adversary inherently

learns which messages are published, since she can join arbi-

trary groups herself, she cannot learn any further information

(e.g., who publishes which message). This is achieved by

using Distributed Point Function (DPF)-based secret sharing.

Compared to prior work [6], [7], we present an improved secret

sharing approach that also protects against active interference.

Subscribers protect their privacy by using Private Information
Retrieval (PIR) for receiving messages.
To the best of our knowledge, no existing protocol can

provide open pub/sub communication with strong provable

privacy guarantees for both publishers and subscribers. Some

protocols require trusted group members [8]–[10] or trusted

execution environments [11]. Others don’t provide both sender

and receiver anonymity [10] or don’t target worst-case pro-

tection [12]. Additionally, some of them are vulnerable to

traffic analysis attacks [13]. PIR-based protocols offer strong

cryptographic security guarantees and hide metadata efficiently

[6], [7], [14]. However, the majority of these protocols support

either point-to-point communication [7] or broadcasting [6],

198

2021 40th International Symposium on Reliable Distributed Systems (SRDS)

2575-8462/21/$31.00 ©2021 IEEE
DOI 10.1109/SRDS53918.2021.00028

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

[14]. PIR-based protocols that support selective multicast

communication either provide strong receiver anonymity but

weak sender anonymity [9], or do not scale well [15].

Designing an anonymous communication protocol always

requires a trade-off between privacy protection, trust, and

overhead [16]. However, we show that 2PPS, despite strong

privacy protection and minimal trust requirements, manages to

keep the overhead for clients at a reasonable level:

• It incurs a latency of 25 s to handle one million users

where each client submits a 160B message and receives

a 10KB block of messages.

• For 50 subscriptions per client, 2PPS requires 300× less

bandwidth compared to broadcasting systems such as

Riposte [6] and Blinder [14].

Contributions: In this paper, we make the following contribu-

tions:

• We introduce 2PPS, a new anonymous publish/subscribe

protocol by combining private writing using Dis-

tributed Point Functions (DPF) and private reading using

Information-Theoretic Private Information Retrieval (IT-

PIR).

• We give formal proof to show that the 2PPS protocol

reaches our stated goals of Publisher- and Subscriber

Unobservability.

• We provide an evaluation of 2PPS that demonstrates its

efficiency in terms of latency and bandwidth.

II. MODEL AND GOALS

A. Protocol Overview

2PPS implements the publish/subscribe model: When publish-
ing a message, the sending user (i.e., the publisher) specifies

a topic the message belongs to. The protocol then delivers

this message to all subscribers of this topic. We assume an

open environment, meaning users can freely subscribe to and

unsubscribe from any topic they wish.

The 2PPS network consists of n clients and N servers with

n � N . Each server stores a full copy of two databases,

a write database Dw and a read database Dr . All servers

collectively maintain the contents of these databases. The read

database Dr is partitioned into a set of �r equal-sized blocks,

with a publicly known topic for each block. The write database

Dw is partitioned into �w equal-sized blocks, each sized to

hold one message.

Similar to related protocols [6], [15], [17], communication

in 2PPS occurs in rounds to defend against traffic analysis

attacks. Each round is split into three distinct phases (Fig-

ure 1 depicts these phases at a high level). During the first

phase, each client deposits exactly one message into the write

database Dw, which is shared among the N servers using

secret sharing. If a client has no real message to send, it

generates a cover message. After the first phase has concluded,

the servers collaborate to reveal all messages simultaneously.

During the second phase, cover messages are discarded and the

remaining messages are sorted into their corresponding topic-

block of the read database. Finally, in the third phase, clients

A

B

C

D

E

F

G

t1 : m1

t1 : m2

t3 : m3

t2 : m4

Dw

t0 : −
t1 : m1,m2

t2 : m4

t3 : m3

t4 : −
Dr

Phase 1
Private publishing
of messages with
included topic id
to random slots

Phase 2
Revealing messages

and grouping them by
topics into Dr

Phase 3
Private retrieval of

messages of subscribed
topics

Fig. 1: Server databases (Dw and Dr) and general protocol

flow.

anonymously retrieve the messages from their subscribed

topic.

B. Threat Model

2PPS assumes a strong adversary A, whose goal is to com-

promise the privacy of honest users. A is assumed to be in

control of all network links. Thus, she may not only passively

observe all traffic on every link, but also insert, delay, drop,

time, and modify arbitrary packets. Further, A may corrupt

N − 1 servers and an arbitrary number of clients. Since we

assume open groups, A may join all groups as a subscriber

through corrupted clients. We assume that honest clients and

servers behave as specified by the 2PPS protocol.

C. Security Goals

2PPS aims to achieve the formal privacy notions of Publisher
Unobservability and Subscriber Unobservability. Kuhn et al.

present a set of game-based privacy notions for unicast com-

munication [18], which we adapt for the pub/sub scenario.

Each notion is defined by a game played between a challenger

C and an adversary A:

1) C chooses a random challenge bit b ∈ {0, 1}.
2) A submits a challenge consisting of two self-chosen

scenarios (S0, S1) to C. Each secenario contains a num-

ber of communications (p,m, t), where p denotes the

publisher, m the message, and t the topic that p sends

m to.

3) C checks the received challenge for validity and, if valid,

simulates the protocol execution of the communications

contained in Sb.

4) Based on his abilities, A gets to observe and interact

with the protocol execution.

5) A determines which of his scenarios was chosen and

submits his guess b′ ∈ {0, 1} to C. A wins if b = b′.
Steps 2-5 can be repeated. Instead of a challenge, the adversary

can also submit a subscription update. The subscription update

specifies for each client the topics she is subscribed to in each

scenario. If differences in the communications between the

two batches lead to differences in protocol behavior that A can

199

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

observe, then A gains an advantage over randomly guessing

the chosen batch.

A concrete privacy notion defines which information is al-

lowed to leak to the adversary and which should be protected

by the protocol. Information that is allowed to leak may not

differ between batches to ensure that A does not gain an unfair

advantage when trying to distinguish. If A can still determine

which of his batches was submitted to the protocol with a

non-negligible advantage over random guessing, the protocol

has failed to protect the information it was supposed to protect

and therefore does not reach this privacy notion.

Publisher Unobservability: With publisher unobservability,

the protocol aims to hide any information about active pub-

lishers. Implicitly, information about messages, topics, and

subscribers is not protected. Thus, A is required to submit

batches that only differ in the publisher of each communica-

tion: Le the ith communication of the submitted first batch

be (pi
0, t

i
0,m

i
0) where topic ti0 has subscribers ri,00 , . . . , ri,n0 .

Then, the ith communication of the submitted second batch

has be of form (pi
1, t

i
0,m

i
0) where ti0 also has to have

subscribers ri,00 , . . . , ri,n0 . If A can determine which of his

batches was executed with a non-negligible advantage despite

this restriction, the protocol does not reach publisher unob-

servability.

Subscriber Unobservability: Analogous to the publisher vari-

ant, subscriber unobservability aims to hide any information

about active subscribers. Since information about publishers,

messages, and topics is allowed to leak, A has to submit

the same communications in both batches. However, which

clients are subscribed to which topics may vary between the

two batches of a challenge.

III. 2PPS ARCHITECTURE

This section describes the 2PPS protocol in greater detail.

Section III-A presents the anonymous publishing phase, Sec-

tion III-B the management of published requests and Sec-

tion III-C the anonymous subscription phase.

A. Phase 1: Anonymous Publishing.

Assume that client Alice wants to publish some message m to

topic t without the adversary being able to link the message

to her. We start by introducing a simple but inefficient method

to hide sender identities from malicious servers. Then we

improve the efficiency of this method and finally extend it

to also protect against adversaries that are in control of the

network.

Naı̈vely, secret sharing [19] can be employed for anonymous

publishing: First, Alice computes a vector w of the same length

as the write database Dw, which contains (t | m) at a random

index and 0 everywhere else. She then computes N secret

shares w1, . . . , wN with the following properties:

1)
∑N

i=1 wi = w
2) Any combination of N −1 secret shares does not reveal

any information about (t | m) or the index at which

(t | m) is located.

Alice distributes the shares to the servers, where the ith server

Si receives wi. Si then adds wi to its read database state Di
w:

Di
w ← Di

w + wi

To hide sending frequencies, all clients are required to publish

exactly one message per round. If the client has no “real”

message to send, she may send a message consisting only of

zeroes to a random topic as cover. After processing requests

from multiple clients, the servers can collaborate to compute

a combined database Dw =
∑

i D
i
w. As long as every client

chose a unique index for her messages, D contains all original

messages.

This approach is quite inefficient: For every write request, a

vector with the same size as the database has to be sent. To

address this issue, Riposte [6] suggested the use of distributed

point functions (DPF).

Definition 1 (DPF): Let fi∗,m : {0, . . . , �w} �→ F be a point

function with

fi∗,m(i) =

{
m for i = i∗

0 for i ∈ {0, . . . , �} \ i∗

fA, fB : {0, . . . , �w} �→ F are distributed point functions of

fi∗,m, iff

1) Neither fA nor fB by themselves reveal anything about

m or i∗

2) ∀ i ∈ {0, . . . , �} : fA(i) + fB(i) = fi∗,m(i)

DPFs can be used to compress the shares sent to the servers

from the naı̈ve approach: Alice runs GenDPF(t | m), which

generates N DPF-shares f1, . . . , fN that contain (t | m)
at a random index. These shares are distributed among the

servers, with server Si receiving fi. Server Si can derive wi

by evaluating fi(j) at every point j ∈ {0, . . . , �w}. Current

research states that sending a DPF share instead of wi directly

reduces the communication cost to O(λ · log �w+log |(t | m)|)
bits where λ is the security parameter [20].

As is, this approach protects against malicious servers, but not

against stronger adversaries, who are also in control of the

network: A could simply intercept Alice’s shares before they

reach the servers and combine them to reveal Alice’s topic

and message. To protect, Alice can encrypt each share with

the receiving server’s public key before sending it. Since we

assume at least one honest server, A cannot gain access to all

shares. Due to the public nature of messages in 2PPS, there

are further active attacks possible:

Replay: To link Alice to her message by replay, A saves all

shares Alice sends in a given round and all messages that

are revealed in the same round. In the next round, A inserts

the saved shares into the traffic. the servers will add them to

their Dw state. A can identify which messages Alice has sent

by observing which identical message was revealed in both

rounds. To detect replayed messages, Alice includes a current

timestamp with every share (inside of the encryption layer).

An honest server can check the time stamp for currentness

and refuse further participation in this round if this check

fails. The share-encryption also prevents A from selectively

200

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

modifying the timestamp. A could also replay the shares in

the same round as the original shares, which would corrupt

Alice’s message. However, this attack is easily detectable by

the honest server, since it has access to all shares of the current

round at once and can check for duplicates.

Modification: Our proposed protection against replay attacks

also enables honest servers to detect if a received request was

modified by A. We assume that encryption used to protect

the share and the timestamp provides diffusion, i.e., ensures

that any change of a ciphertext leads to widespread and

unforeseeable changes of the plaintext. Thus, any modification

of a request leads to a significant change of the included

timestamp with overwhelming probability. The honest server

detects this invalid timestamp and refuses further participation

in the current round.

Drop & Delay: Attacks based on dropping and delaying mes-

sages are both very common and hard to avoid in anonymous

communication [21]. If a powerful adversary can drop the

requests of all but one client, then he can unambiguously

link this client to her messages once the shares are combined.

A less powerful adversary might have insider knowledge of

a message that will be sent in a given round. If he drops

the request of the suspected sender and the message is not

published, his suspicion is confirmed.

To detect a dropped request, the honest server needs to know

how many messages are supposed to arrive in a given round.

Related literature commonly assumes that protocol participa-

tion is static, i.e., that clients are always online [22], [23].

This is a very strong and arguably not very realistic assumption

since it discards user churn. We introduce an additional mech-

anism that enables us to make weaker assumptions regarding

client participation:

The verifiable participation commitment requires every client

who joins the network to send a message to each server with

which the client commits herself to participate in the next k
rounds. The parameter k can be chosen by the client to fit

his routine. A client could for example join when arriving at

his office in the morning and commit to participating until

his usual end of the workday. Clients can also commit to

shorter periods and renew their commitment periodically. With

that, the honest server knows from which clients to expect

requests in any given round. If fewer requests than expected

are received, the server assumes that a malicious drop must

have occurred and refuses further participation to protect the

senders’ privacy. The adversary also needs to be prevented

from replacing dropped requests with self-generated ones to

circumvent the protection. This can be done by requiring the

clients to include a digital signature with every request. That

way, each request can be linked to the client who sent it and

the server can verify that all committed clients have indeed

participated.

B. Phase 2: Managing Published Messages.

When the writing epoch ends, the servers reveal the published

messages among each other by combining their Dw states. As

a first step, all cover messages (i.e., those which only contain

zeroes) are discarded. Together, the servers choose a block size

for Dr such that every topic’s messages fit into a single block.

Thus, the block size may be changing from round to round

depending on the number of messages per topic, but at any

point, all blocks of Dr have the same size. Next, the servers

append each message in Dw to its corresponding topic-block

in Dr. These messages are stored temporarily in Dr until the

end of the communication round.

Updating the Topic List: Over time, new topics will be

created and others will become inactive, thus there is a need

for periodically updating the list of current topics and their

corresponding blocks in Dr. To create a new topic, the client

follows the same steps as when sending a message to an

existing topic but includes a new topic id. The servers take

notice of the unknown id and save the included message.

During the next database update, a block for this new topic

is created, and the topic is included in the list of topics sent

to the clients. The first message from the original creator is

added to this topic in the following round. Regarding deleting

the inactive topics from Dr, servers will consider a topic as

inactive, if there are no published messages on this topic for

some configured number of rounds. The topic list and mapping

from topic to block ID are updated periodically and clients are

informed of the update afterward.

C. Phase 3: Anonymous Subscribing.

2PPS allows clients to anonymously subscribe to topics and

get new messages without polling them. Like related proto-

cols [9], [15], it depends on information-theoretic PIR (IT-

PIR). The anonymous subscription consists of two building

blocks: Subscription registration and message retrieval.

Private Subscription Registration: 2PPS requires all clients to

update their subscriptions at a fixed rate to hide changes in

interest. Every time a client receives a topic-list update, he

has to renew his subscription. If the client is not interested in

any topic, he sends a subscription request to a random topic.

Clients that newly join the network need to wait until the next

topic update to start participation.

Assume that Alice wants to subscribe to the jth topic. To do

so, she creates a vector q ∈ {0, 1}�r , which is equal to 1

at position j and equal to 0 at all other positions. Alice then

computes a subscription request reqi = Encpki
(si|qi) for each

server Si with i ∈ {1, . . . , N}. Enkpki
(·) is an encryption

under the Si’s public key pki, si ∈ {0, 1}�w is a randomly

chosen shared secret and the PIR query qi is computed as

follows:

qi =

{
random for i < N

q ⊕ q1 ⊕ · · · ⊕ qK−1 for i = N

The shared secret si is locally updated each round syn-

chronously at client and server (e.g., using a cryptographic

hash function or a key schedule).

To reduce the client’s inbound bandwidth, related literature [9],

[15] suggests the use of a random server P as a proxy for the

client: Instead of sending the subscription requests q1, . . . , qN
directly to the servers, the client sends them to his proxy P . P

201

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

forwards these requests to corresponding servers where they

are stored.

Remark 1 (Multiple Subscriptions): Each subscription regis-

tration may only contain a subscription to a single topic. If a

client wants to be subscribed to multiple topics simultaneously,

he has to send multiple subscription requests. To hide the

number of topics clients are subscribed to, all clients need

to send the same number of subscription requests. These can

contain a mix of real subscriptions and cover subscriptions to

random topics.

Private Messages Retrieval: In every round, each server Si

computes a response resi for each stored subscription by

taking the XOR of all Dr blocks that have 1 in their positions

in the PIR query. Instead of sending the responses directly

to the client, the servers submit them to P who computes

res ← ⊕
i∈{1,...,N} resi, and forwards it to the client. Thus,

the client’s incoming bandwidth is reduced by a factor of

N . To prevent P from learning which topic the client has

subscribed to, each server has to obfuscate its response. Server

Si obfuscates its response by computing resi ← resi⊕si, the

client can restore the desired block of published messages by

computing res⊕ s1 ⊕ · · · ⊕ sN .

IV. ANALYSIS OF 2PPS SECURITY PROPERTIES

In this section, we show that 2PPS reaches our formalized

privacy goals as defined in Section II-C.

Theorem 1 (Publisher Unobservability): 2PPS achieves Pub-

lisher Unobservability.

Intuitively, reaching Publisher Unobservability requires un-

linking senders from their messages and hiding which senders

are active. To unlink senders from their messages, 2PPS

employs secret sharing based on distributed point functions.

Each server receives a secret share that does not reveal any

information about the contained message by itself. Only once

all clients have submitted their shares, the combination of all

shares is revealed all at once. We strengthen the secret sharing

scheme against adversaries in control of the whole network by

introducing a timestamp and an additional layer of encryption

around the shares. This prevents the adversary from being able

to modify or replay shares. Further, we introduce the verifiable

participation commitment which enables honest servers to

detect dropped shares. Finally, we hide which senders are

active by requiring all clients to send at a fixed rate, creating

cover messages when they don’t have a real message to send.

A full proof of security can be found in Appendix A.

Theorem 2 (Subscriber Unobservability): 2PPS achieves

Subscriber Unobservability.

In 2PPS, IT-PIR ensures that subscribers cannot be linked to

the topics they’re subscribed to. Both subscription requests

and the responses containing the messages appear random

to any adversary that is not in control of either the client

itself or all servers. The use of cover traffic and synchronized

round further ensures that the adversary cannot gain any

information about the frequencies at which the client updates

his subscription or receives messages. A full proof of security

can be found in Appendix B.

V. PERFORMANCE EVALUATION

Privacy protection should not be only restricted to those with

access to powerful hardware, but also it should support users

who have limited bandwidth and computational power, e.g., in

a mobile setting. 2PPS aims to keep the overhead at a reason-

able level to enable as many clients as possible to participate.

The goal of our evaluation is to investigate the impact of using

DPFs (for private writing), and IT-PIR (for private reading)

together on computation and network overhead on both client

and server sides. One important measure of scalability is the

end-to-end latency of a system. For 2PPS, we evaluate the

influence of a changing number of participating clients, the

number of subscribed topics per client, and the number of

messages per topic on the latency of the system.

Implementation: A prototype of our protocol is implemented

in C and Go. We use Go for the high-level operations of

client and server. Cryptographic primitives are used from the

DEDIS advanced crypto library and Go’s native crypto library.

We rely on the available source code of Express1 for C

implementations of the auditing protocol and DPFs. To update

the shared secrets between clients and servers locally, we use

keyed AES similar to Riffle [15]. We conduct the experiments

on three virtual machines, each equipped with a 16-core Intel

Xeon E5-2640 v2 processor and 64GB of RAM. All three

machines are located in the same data center. We operate

two of them as servers and use the third one to simulate the

clients. In all experiments, each client is configured to send

one message per round (LS in Figure 2 refers to the length of

the sent message). All clients participate in every round. Also,

we test the performance of private retrieval for three different

block sizes: 10 KB, 64 KB, and 256 KB (LR in Figure 2

refers to the length of the retrieved block). We adopt these

block sizes from [23], [7] and [15].

Baselines: We compare 2PPS to three different PIR-based

anonymous group communication protocols: Riposte [6], Pung

[23], and Blinder [14]. We choose these protocols since they

provide cryptographic anonymity guarantees similar to 2PPS.

Riposte and Blinder support anonymous broadcasting, whereas

Pung and 2PPS provide selective multicast communication

(i.e., they allow the users to fetch only the messages that are

interesting to them).

A. Computation Overhead

To understand the computation costs that are imposed on the

client and server-side, we run a set of experiments in which

every client sends one 1KB message and retrieves one 64KB
block per round. Between experiments, we vary the number

of messages processed by the servers (i.e., the number of

participating clients). Since each client selects a random row

to write its message into, collisions are possible and lead to

the irreversible corruption of both colliding messages. In this

experiment, we use a large fixed database Dw to handle this

issue. This database achieves write success rates of 99.8%,

98%, and 82% for 103 , 104 , and 105 messages respectively

1https://github.com/SabaEskandarian/Express

202

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

Messages Processed
103 104 105

Client CPU costs
Generate DPF shares 229.26μs 229.26μs 229.26μs
Audit 204.16μs 204.16μs 204.16μs
Create PIR query 0.533μs 6.73μs 12.54μs
Process PIR reply 19.33μs 21.79μs 22.027μs

Server CPU costs
Expand DPF shares 5.62 s 5.62 s 5.62 s
Audit 36.52ms 36.52ms 36.52ms
Second Phase
1. Combine Dw states 13.27ms 14.01ms 19.66ms
2. Group messages 0.08ms 0.87ms 6.70ms
Process PIR Query 0.17ms 1.19ms 10.06ms

TABLE I: Cost of 2PPS operations under varying the number

of messages stored on the server where the size of each

message is 1 KB.

(according to the success rate formula in [6]). As the size of

Dw is fixed, clients and servers pay fixed CPU costs for each

write-request regardless of the number of messages received

by the servers.

As shown in Table I, the client’s operations are all compara-

tively inexpensive. Note that, “Create PIR query” is done only

during subscription updates rather than every round. “Process

PIR reply” denotes the time it takes to XOR the received

PIR reply with the shared secrets to reveal the messages.

The computation costs for the servers are dominated by the

first phase (“Expand DPF shares” and the “Audit”). Also, the

second phase introduces overhead which can be broken down

further into the costs of two sub-phases: combining the shared

Dw states, which accounts for the largest part of the overall

time of the second phase, and the grouping of messages into

their corresponding topics.

B. Network Overhead

In this section, we discuss the network overhead of 2PPS.

These measures are especially important in bandwidth-

restricted scenarios, such as mobile communication. We split

our discussion into two parts: First, we consider the total

bandwidth consumed by the operation of 2PPS versus related

protocols. Second, we investigate how much “unnecessary”

bandwidth in form of cover messages is required for 2PPS.

Comparative bandwidth comsumption: Figure 2a shows the

total communication cost to send one message and retrieve

one block by the client when the number of participating

clients varies. That includes all the sent and received messages

between the client and the server to achieve private writing and

reading. Since we use a fixed size for Dw, the communica-

tion costs of private writing (including the auditing) are not

growing when the number of clients increases.

Compared to Pung, 2PPS’s anonymous writing is more ex-

pensive. However, Pung’s reading phase introduces a high

communication overhead that makes the total cost of commu-

nication using Pung significantly more expensive than 2PPS.

For instance, when there are one million messages on the

server, Pung has a total communication cost that is 1,263×

larger than 2PPS to send a 1KB message and retrieve a 10KB
block. Note that, in the shown results, the costs of Pung include

sending the PIR query by the client to retrieve the messages.

If we assume that the PIR queries are stored already on the

servers (similar to 2PPS), this will reduce the Pung costs to

950× larger than 2PPS which is still a substantial difference.

Pung’s high overhead occurs because clients do not know the

index of the data that they are interested in. Instead, they

perform a binary search on the database through multiple CPIR

queries. Further, the size of the CPIR answer increases as the

CPIR recursion depth becomes higher. Angel et al. state that

Pung’s approach results in an increase of network overhead

by a factor of log(n) for a database of n elements compared

to PIR with known indices [23, Section 7.4].

Riposte also requires communication costs much higher than

2PPS. For 106 clients, 2PPS has 5,033× less total cost than

Riposte. 2PPS has better performance for two reasons: 1) it

uses a new generation of DPFs [24] and an auditing protocol

[7] that is more efficient than the one used in Riposte; 2) it

sends to each client only a subset of the published messages,

whereas Riposte broadcasts all messages to all clients.

Blinder introduces high total communication costs due to its

need to operate by a large number of servers to achieve its

anonymity guarantees (in our experiments, we ran Blinder on 5

servers). Additionally, it broadcasts all published messages to

every client resulting in high communication overhead similar

to Riposte. For 106 clients, the total network cost for each

Blinder client is around 160MB while the corresponding value

in 2PPS is about 32KB.

To further explore the performance implications of using IT-

PIR on the network download overhead, Figure 2b depicts the

total amount of data a client receives during 20 rounds for

one subscription per client. In 2PPS, the amount of data per

round equals the number of subscriptions a client has times the

block size. A client who subscribes to one topic with a block

size of 64KB, downloads 1.28MB during 20 rounds. Pung

introduces a much higher communication overhead than 2PPS

as well, but less than broadcasting. A Pung user downloads

more data than a 2PPS user by a factor of 54−512× to retrieve

a 10KB block.

To compare the download overhead in 2PPS with a broadcast-

based approach such as Riposte and Blinder, we consider

broadcasting under three different assumptions regarding the

number of cover messages. The first case (denoted as ”broad-

casting 100%”) assumes that all messages that clients sent

to the servers are real messages. Analogously, broadcasting

50% and 25% assume that 50% and 25% of messages are

real, respectively. Note that cover messages are discarded and

therefore not broadcast to the clients. For one million clients,

the network download of broadcasting (100%) is 20GB in

20 rounds, resulting in a 15,625× increase over 2PPS when

the block size is 64KB. Hence, this method is extremely

inefficient in terms of bandwidth for popular services.

As shown in Figure 2c, 2PPS also considerably outperforms

the three broadcasting variants when the number of subscrip-

tions per client increases. Therefore, adopting IT-PIR in our

203

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

protocol to retrieve the interesting messages generally allows

bandwidth-efficient communication between client and server.

That makes 2PPS suitable for bandwidth-restricted users.

Average Cover Ratio: While 2PPS’s retrieval method in-

troduces no overhead for downloading a fixed amount of

data, another kind of overhead occurs if topics have differing

popularity: Similar to the “Counting Bound” proposed by

Gelernter and Herzberg [25], hiding which topic a client is

subscribed to requires a certain amount of overhead:

Assume that A knows the combined size of all messages sent

to each topic and assume that each client subscribes to a

single topic. To hide any information about the link between

clients and their subscribed topics, all clients have to receive a

response large enough that it could contain all messages from

the most popular topic. Otherwise,A can eliminate topics from

the list of possible subscriptions for a given client which have

more messages than the client receives.

To fulfill the Receiver Counting Bound, 2PPS pads each

topic to the same size as the most popular topic using cover

massages; a client subscribed to any topic that receives fewer

messages than the most popular one will receive some amount

of cover messages with his PIR response creating network

overhead. We want to evaluate how much of a client’s request

on average consists of cover messages. While we have no real

usage data for 2PPS, we can find related literature to approxi-

mate how topic popularity might be distributed: According to

Chen et al. [26], the popularity distribution of Twitter hashtags

follows Zipf’s law with an exponent of α ≈ 0.8. Further,

Liu et al. [27] have analyzed the RSS feed characteristics

and determined that the popularity of feeds sorted by the

number of requests also follows Zipf’s law with an exponent

of α ≈ 1.37. We use Chen et al.’s result to approximate the

number of messages sent to a given topic and Liu et al.’s

result to determine the likelihood of a client subscribing to

a given topic. In our experiment, we assumed that the most

popular topic receives 1000 messages and that the ith most

popular topic receives 1/i0.8 as many messages. We chose

a random topic index j according to a Zipfian distribution

with parameter α = 1.37 and determined how many cover

messages topic j required. Under these assumptions, clients

receive approximately 54% cover messages per retrieval on

average. Note that this number highly depends on the actual

usage patterns of the service: If all topics receive the same

number of messages, no cover messages are required, if topic

popularity varies widely, more than 54% cover messages

might be received on average.

C. End-to-End Latency

To evaluate the efficiency of our protocol, we are interested

in computing the total time required to send one message

and retrieve one block by each client. The latency in 2PPS

is measured as the total time of all three protocol phases.

The time of DPF evaluation represents the expensive part of

the total latency, and it depends on the size of Dw. Having

a fixed large database means a fixed big evaluation time for

DPF shares even when the number of received write requests

is small. For less latency, the evaluation time can be reduced

by changing the size of Dw based on the number of expected

requests. However, the database should be still large enough

to handle requests successfully with high probability.

The latency of the third phase is determined by the number

of topics, the block size, and the number of subscriptions per

client. The more topics the read database contains or the larger

each topic block is, the longer it takes to compute a PIR reply.

If a client subscribes to more topics, the number of PIR replies

that need to be computed increases, increasing latency.

Figure 2d illustrates how the retrieval time of one block scales

whith varying block sizes and numbers of clients. In general,

retrieving messages using either our method or broadcasting

doesn’t cause much latency. We compared our protocol to

broadcasting to understand the performance implication of

using PIR for distributing messages to the receivers instead

of using a broadcast. 2PPS is considerably faster than Pung,

even when retrieving larger blocks.

Figure 2e illustrates the increase in retrieval time when a 2PPS

client subscribes to many topics. The number of participating

clients influences the time required to broadcast messages

more than it does with 2PPS. That is especially true when

most of the published messages are real. For 104 clients,

retrieving 12 blocks using 2PPS takes 97ms more than the

broadcasting, which means the difference in the latency time

between the two approaches is comparatively insignificant.

Therefore, 2PPS’s retrieval method can reduce the bandwidth

without leading in return to high latency, even if the clients

have many subscriptions.

Figure 2f shows the end-to-end latency for posting one mes-

sage when we vary the number of clients. Again, this figure

demonstrates the negligible effect of retrieval time on the total

latency, as the end-to-end latency of 2PPS is slightly smaller

than the method that relies on DPF and broadcasting (instead

of IT-PIR). 2PPS has significantly better performance than

Riposte as it adopts a more efficient DPF version [24] and

auditing method [7].

We compared the latency of 2PPS to Pung when sending one

1KB message and retrieving one 10KB block (10 messages

in the block). As shown in Figure 2f, 2PPS outperforms Pung

especially for a modest number of clients. In Pung, communi-

cation partners are required to trust each other, which enables

clients to agree upon secret mailboxes for their message

exchange. Since the link between clients and their mailboxes is

not known to the adversary, messages can be directly written

to the mailboxes, resulting in much less overhead than our

DPF-based approach. The use of a single untrusted server in

Pung requires much more overhead in the retrieval of messages

than IT-PIR based approach of 2PPS. Overall, this expensive

reading phase more than offsets any advantages in the latency

of Pung’s writing phase. The latency of Blinder is close to

Riposte and considerably higher than 2PPS. Similar to 2PPS,

the most expensive part in Blinder is the process of expanding

the submitted blind write requests to add them to the database.

For 105 clients, the total time to serve this number of clients

is around 8 minutes, and the expanding process acquires 96%

204

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

(a) Total communication costs when the
client sends one message and retrieves one
block of messages.

(b) The total amount of downloaded data by
a client after 20 rounds with varying numbers
of clients and block sizes.

(c) The total amount of downloaded data
by a client for 100,000 clients with varying
numbers of subscribed topics and block sizes.

(d) Retrieval time of one block per client with
varying number of clients and block size.

(e) Retrieval time when a client subscribes to
different number of topics.

(f) End-to-end latency of message delivery
when a client subscribes to one topic.

Fig. 2: Evaluation Results

of the total latency. 2PPS supports the same number of clients

with less than half of Blinder’s time.

VI. RELATED WORK

2PPS provides a publish/subscribe protocol that achieves

provable publisher and subscriber unobservability against a

global active adversary who may also corrupt arbitrary clients

and all but one server. Privacy protection is achieved via a

combination of DPF-based secret sharing for publishing and

PIR for subscribing to topics. In this section, we provide an

overview of existing anonymous communication protocols and

how they compare to 2PPS.

Mixnets-based Protocols.: Mix networks (mix nets) [28]–

[30] ensure the anonymity of users by obfuscating the source

of a message. They work by collecting the messages from

many users and shuffle them by a set of servers called mixes

before sending them out to recipients. Therefore, they make it

difficult for the global adversary to correlate input and output

messages and protect against traffic analysis attacks. However,

malicious mixes can launch several attacks to deanonymize

users; for instance, they can drop, modify, or duplicate the

input messages before sending them out [31]–[33]. Verifiable

shuffles techniques [34]–[36] have been proposed to protect

against tampering messages by malicious servers, but these

techniques introduce high computation overhead. Mixnets-

based protocols like McMix [37], Atom [38] and XRD [39]

induce high latency to support large numbers of users. While

protocols as Vuvuzela [22], Stadium [40], Alpenhorn [41], and

Karaoke [42] achieve better performance than 2PPS, but they

provide weaker differential privacy guarantees compared to

the cryptographic guarantees as 2PPS does. In practice, this

means that an adversary learns more information the longer

he observes the mixnet, which is not the case for 2PPS.

DCnets-based Protocols.: Chaum’s Dining Cryptographers

network (DCnet) [43], [44] is an information-theoretic anony-

mous broadcast method. To increase the scalability and practi-

cality of DCnets, many protocols like Dissent [8] and Verdict

[45] adopted the client-server paradigm, where n clients form

the anonymity set, but only a small set of N servers implement

the functionality. This adoption reduces the overall communi-

cation complexity from O(n2) in the traditional DCnet model

(where there is a full graph between clients) to O(N ·n) in the

client-server DCnet model. The sender anonymity guarantees

that DCnet protocols provide are the same as 2PPS does.

However, the size of the sent and the received message in

2PPS is significantly smaller than in DCnet protocols. That is

because 2PPS uses DPF to compress the write requests and IT-

PIR to only retrieve the blocks that the client is interested in,

205

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

instead of getting all the messages through broadcasting. Also,

the used primitives in our protocol allow it to support a much

larger number of clients and provide faster communication

time than DCnet protocols do [6], [7].

PIR-based Protocols.: Many protocols rely on PIR methods

to enable anonymous communication. There are two classes

of these protocols that are: 1) information theoretic-PIR-

based protocols (multiserver) such as Express [7], Riposte

[6], Blinder [14], and Talek [9]; and 2) computational-PIR-

based protocols (one server) such as Pung [23]. Express uses

DPF to allow a user to send a message anonymously to

the mailbox of another user. However, this protocol does

not protect the anonymity of the mailbox’s owner (i.e., the

receiver’s anonymity). Riposte and Blinder also use DPF but

broadcast all the published messages. As we have shown in our

evaluation (Section V), broadcasting results in much higher

network overhead than 2PPS’s PIR, making it not suitable

for bandwidth-restricted scenarios. DPF-based protocols in

general have a comparatively low computational overhead and

can scale to support millions of users. Talek provides a private

publish-subscribe protocol that allows communication between

small groups of trusted users. In contrast, 2PPS’s overhead

does not depend on the number of subscribers a topic has and

users neither have to trust publishers nor other subscribers to

protect their privacy. Pung operates in a single-server setting

and provides strong anonymity guarantees since it can hide

user’s interests even if the server is malicious. However, it

introduces more overhead than 2PPS and requires users to

trust their communication partners.

VII. DISCUSSION

In this section, we present some lessons learned from design-

ing a public-message protocol based on secret sharing and

private information retrieval.

Availability: As discussed in Section III, 2PPS owes its strong

provable privacy protection to the combination of secret shar-

ing and private information retrieval. Both of these techniques

distribute trust by relying on multiple servers. This distribution

of trust is great from a privacy perspective: As long as one

server remains honest, user privacy is preserved. Users with

high privacy requirements can even deploy their own servers

to increase the chance of an honest one existing.

While very advantageous when it comes to privacy, secret

sharing and PIR are very vulnerable as far as availability

is concerned: If a single malicious server refuses to provide

its write-database state after clients sent their messages, the

protocol execution cannot continue. To reveal the messages,

all shares are required by design. The same problem arises on

the reading site: If a malicious server refuses to send his PIR

response, the clients will not be able to receive the message

from their subscribed topics. Thus, as related literature [6], [9],

we assume that malicious servers do not target availability.

Remark 2 (Backup Servers): An obvious mitigation against

availability attacks from servers would be to introduce a

“backup” server for each server. The backup server would

receive the same information as its corresponding main server.

In case the main server refuses to submit his shares, the backup

server can step in. This avoids disruption as long as not both

one main server and its backup refuse to participate. However,

this comes at the cost of additional trust. Instead of only

requiring one server to be honest, two honest servers are re-

quired; One honest main server and one honest backup server.

Further, communication overhead for publishing messages also

increases twofold, since the number of servers is doubled.
Malicious clients may also target availability. While the au-

diting protocol prevents clients from submitting malformed

requests that would corrupt the write database, there are

other avenues of attack which are inherent to 2PPS’ open

nature: An adversary could create a large number of topics,

increasing the required size of the write- and read databases

and therefore also the network overhead of the whole system.

Further, the adversary could also spawn a large number of

clients who all submit messages to a single topic, increasing

the amount of cover needed for all other topics. In scenarios

where availability is of greater concern than the open nature

of the systems, mechanisms can be put in place that increase

the effort of adding users and topics to the system.
Mitigating Intersection Attacks: Due to the public nature of

messages and topics, 2PPS is particularly vulnerable to a

specific kind of intersection attack: Assume that the adversary

A wants to find out the interests of client Alice, who only

publishes to a single topic. Every time Alice is participating

in a communication round, A records which topics are active

(i.e., have messages sent to them). Over multiple rounds, A
intersects the list of active topics until only a single topic

remains, which is unambiguously linked to Alice.
Intersection attacks are inherently possible in any protocol that

allows users to choose when they want to participate (see Ap-

pendix C for proof). While we assume constant participation

for our security analysis, we also present possible mitigation

techniques against intersection attacks for situations where

constant participation is not obtainable:

• Cover Traffic. A simple mitigation that is already in use

with 2PPS is cover traffic. If Alice uses cover traffic,

then A cannot distinguish rounds where Alice is sending

“real” messages from rounds where she is participating

idly, increasing the number of rounds A needs to observe.

• Delayed Publishing. Alice can also require that her

message is not published in the round where she sent it

but later (when Alice might already be offline). To do so,

Alice can include some random delay d in the message-

topic tuple t | m and encrypt it with the public key

of one of the servers. After combining their Dw states,

the corresponding server will reveal the ciphertext and

delay publishing it. This solution is based on the idea of

distributing knowledge which means each server knows

the real publishing time of only a subset of all messages.

Thus,A who controls one of the servers cannot accurately

link every message to the set of the potential senders.

Collisions: In 2PPS, the client chooses a random row in the

database to write her message into. Therefore, it is possible to

have collisions, i.e., two or more clients writing their messages

206

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

in the same row which corrupts both messages. To minimize

the probability of collisions during normal operation, 2PPS

uses a write database that is much larger than the number

of participating clients. However, this solution cannot solve

the problem completely. If a client does not find her message

among the published message in a given round, she has to

assume that a collision occurred and may try to send her

message again in a later round. Blinder [14] employs another

approach to deal with collisions: If a client wants to publish

message m, she computes one set of secret shares with m at

a random index and another set of shares with the square of

m at the same index. The servers store the received shares

in separate databases. If a single collision occurred for a

given index, the combined shares of both databases form a

solvable system of quadratic equations, enabling the servers

to reconstruct both original messages. While this reduces the

required storage space on the server side, it requires more

computational overhead for clients and servers.

VIII. CONCLUSION & FUTURE WORK

2PPS provides an anonymous publish/subscribe protocol with

strong provable privacy guarantees for both publishers of mes-

sages and subscribers. This is achieved by combining secret

sharing based on distributed point functions for publishing

with private information retrieval for accessing subscribed top-

ics. Compared to previous work, additional protection mecha-

nisms are introduced to the secret sharing: A combination of

timestamps and encryption allows 2PPS to provide publisher

privacy not only against a malicious server but also against

stronger adversaries that can observe and interfere with traffic

on all network links. Our experimental evaluation shows that

2PPS can support a large number of users with latency suitable

for applications such as microblogging and newsfeeds. While

2PPS reaches its stated goals, we see the following avenues

for future improvement:

• Improvements to the auditing protocol to increase the

number of servers without introducing high computation

and communication costs.

• Enabling users to subscribe to multiple topics using

one subscription request. If servers would be able to

handle all the subscriptions of one client at once, more

efficient packing of messages may be possible, reducing

the amount of cover needed.

• Allowing the anonymous retrieval of messages from

previous rounds.

• Lowering latency to enable use cases such as live stream-

ing.

Acknowledgments

We thank Martin Byrenheid, Clemens Deusser, and Ephraim

Zimmer for their valuable feedback and discussion.

REFERENCES

[1] A. Hern. Firechat updates as 40,000 iraqis download ’mesh’ chat app
in censored baghdad. The Guardian, 2014.

[2] A. Bland. Firechat – the messaging app that’s powering the hong kong
protests. The Guardian, 2014.

[3] A. Herasimenka et al. There’s more to belarus’s ‘telegram revolution’
than a cellphone app. The Washington Post, 2020.

[4] C. Baraniuk. Firechat warns iraqis that messaging app won’t protect
privacy. Wired, 2014.

[5] M. Smithberger et al. Making sense of the $1.25 trillion national security
state budget. POGO.org, 2019.

[6] H. Corrigan-Gibbs et al. Riposte: An anonymous messaging system
handling millions of users. In IEEE S&P, 2015.

[7] S. Eskandarian et al. Express: Lowering the cost of metadata-hiding
communication with cryptographic privacy. ArXiv, 2019.

[8] D. Wolinsky et al. Dissent in numbers: Making strong anonymity scale.
In USENIX OSDI, 2012.

[9] R. Cheng et al. Talek: a private publish-subscribe protocol. Technical
report, 2020.

[10] G. Perng et al. M2: Multicasting mixes for efficient and anonymous
communication. In ICDCS, 2006.

[11] S. Arnautov et al. Pubsub-sgx: Exploiting trusted execution environ-
ments for privacy-preserving publish/subscribe systems. In SRDS, 2018.

[12] G. Giakkoupis et al. Privacy-conscious information diffusion in social
networks. In DISC, 2015.

[13] D. Lin et al. Scalable and anonymous group communication with mtor.
PETS, 2016.

[14] I. Abraham et al. Blinder: Mpc based scalable and robust anonymous
committed broadcast. IACR Cryptol. ePrint Arch., 2020.

[15] A. Kwon et al. Riffle: An efficient communication system with strong
anonymity. PETS, 2016.

[16] C. Kuhn et al. Sok on performance bounds in anonymous communica-
tion. In WPES, 2020.

[17] D. Wolinsky et al. Dissent in numbers: Making strong anonymity scale.
In USENIX OSDI, 2012.

[18] C. Kuhn et al. On privacy notions in anonymous communication. PETS,
2019.

[19] A. Shamir. How to share a secret. Commun. ACM, 1979.
[20] E. Boyle et al. Function secret sharing: Improvements and extensions.

SIGSAC, 2016.
[21] M. Ando et al. On the complexity of anonymous communication through

public networks. ArXiv, abs/1902.06306, 2019.
[22] J. Van Den Hooff et al. Vuvuzela: Scalable private messaging resistant

to traffic analysis. In SOSP, 2015.
[23] S. Angel et al. Unobservable communication over fully untrusted

infrastructure. In USENIX OSDI, 2016.
[24] E. Boyle et al. Function secret sharing: Improvements and extensions.

In SIGSAC, 2016.
[25] N. Gelernter et al. On the limits of provable anonymity. In WPES, 2013.
[26] H. Chen et al. Scaling laws and dynamics of hashtags on twitter. Chaos,

2020.
[27] H. Liu et al. Client behavior and feed characteristics of rss, a publish-

subscribe system for web micronews. In IMC, 2005.
[28] D. Chaum et al. cmix: Anonymization by high-performance scalable

mixing. In ACNS, 2017.
[29] D. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 1981.
[30] A. Jerichow et al. Real-time mixes: A bandwidth-efficient anonymity

protocol. IEEE Journal on Selected Areas in Communications, 1998.
[31] B. Pfitzmann et al. How to break the direct rsa-implementation of mixes.

In EUROCRYPT, 1989.
[32] L. Nguyen et al. Breaking and mending resilient mix-nets. In PETS,

2003.
[33] B. Pfitzmann. Breaking an efficient anonymous channel. In EURO-

CRYPT, 1994.
[34] S. Bayer et al. Efficient zero-knowledge argument for correctness of a

shuffle. In EUROCRYPT, 2012.
[35] J. Furukawa et al. An efficient scheme for proving a shuffle. In CRYPTO,

2001.
[36] J. Brickell et al. Efficient anonymity-preserving data collection. In

SIGKDD, 2006.
[37] N. Alexopoulos et al. Mcmix: Anonymous messaging via secure

multiparty computation. In USENIX Security, 2017.
[38] A. Kwon et al. Atom: Horizontally scaling strong anonymity. In SOSP,

2017.
[39] A. Kwon et al. Xrd: Scalable messaging system with cryptographic

privacy. In USENIX NSDI, 2020.
[40] N. Tyagi et al. Stadium: A distributed metadata-private messaging

system. In SOSP, 2017.

207

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

[41] D. Lazar et al. Alpenhorn: Bootstrapping secure communication without
leaking metadata. In USENIX OSDI, 2016.

[42] D. Lazar et al. Karaoke: Distributed private messaging immune to
passive traffic analysis. In USENIX OSDI, 2018.

[43] D. Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of cryptology, 1988.

[44] P. Golle et al. Dining cryptographers revisited. In EUROCRYPT, 2004.
[45] H. Corrigan-Gibbs et al. Proactively accountable anonymous messaging

in verdict. In USENIX Security, 2013.
[46] D. Wolinsky et al. Hang with your buddies to resist intersection attacks.

SIGSAC, 2013.

APPENDIX

A. Proving Sender Unobservability

Lemma 1 (Message Unlinkability): A cannot identify which

sender sent a given message.

Proof: We proof Lemma 1 by showing that A cannot use any

of his abilities to do so.

• Passive Observation. Every client sends one request

per round to each server. All requests are encrypted

under the receiving servers public key. The servers collect

the incoming requests and reveal all messages from the

current round at once. Thus, A cannot link messages to

senders by passively observing requests between clients

and servers.

• Server Corruption. According to our assumptions, A
is able to corrupt all but one 2PPS servers. A can only

match a client to the request he sends prior to adding it

to the dbw state. However, at this point, A can learn at

most N−1 of the clients N DPF-shares. Related literature

has formal proves that combining N − 1 shares does not

reveal any information about the enclosed message [24].

• Replay. A could either replay request during the same

or a later round. If A replays a request during the same

round as the original request was sent, the honest server

will detect identical requests arriving and discard all but

one. If A replays a request during some later round, the

honest server will notice that the included timestamp is

not valid and discard the request. A is not able to update

the timestamp of the replayed request, since it is protected

by an encryption layer prior to the honest server.

• Modification. To be able to link a request to the client

who sent it, A has to modify the request prior to the hon-

est server. Since the contained DPF-share is encrypted,

any modification at this point will lead to unpredictable

changes of the share. Such a share will be rejected by

the honest server’s auditing protocol with overwhelming

probability.

• Dropping. We assume that the honest server can detect a

dropped request and refuse further protocol participation.

Theorem 3 (Sender Unobservability): 2PPS achieves Sender

Unobservability.

Proof: We define a series of hybrid games:

• H0: The original SO game

• H1: H0, but clients can only publish 0-messages to a

random topic

• H2: H1, but clients can only publish cover messages

• H3: Identical Scenarios

In the following, we show that any adversary that can win

Hi non-negligible advantage can also win Hi+1 with non-

negligible advantage.

• H0 ≈ H1: We assume that A can win H0. Lemma 1

states that A does so without being able to link any

revealed message to a sender.

• H1 ≈ H2: The only difference between a cover message

and a “real” message is it’s content: While a real message

is sent to a chosen topic and can contain an arbitrary

plaintext, a cover message is sent to a random topic and

contains only 0s. We note that H1 already requires real

messages to have identical content to cover messages.

Thus, all messages in H1 are indistinguishable from cover

messages to A. If A can win H1, he can therefore also

win H2.

• H2 ≈ H3: As mentioned previously, we assume that all

clients participate in every round. Further, every client

sends exactly one message in each round. In H2, all

messages are sent to a random topic and contain only

0. Thus, A already has no influence on protocol activity

in H2 and the scenarios therefore appear identical to him.

We have shown that any adversary who can win H0 can also

win H3 with a non-negligible advantage. Since A is only

allowed to submit identical scenarios in H3, there cannot be

any such A. Therefore, no A can win H0, which is equivalent

to the SO game.

B. Proving Receiver Unobservability
Theorem 4 (Receiver Unobservability): 2PPS achieves Re-

ceiver Unobservability.
Proof: With Receiver Unobservability, A may not learn any

information about receiver activity. A can either gain infor-

mation about receivers by observing subscription registrations

or communication.

• Subscription Registration. Each client sends his sub-

scription registrations at a fixed rate to each server.

Prior to the receiving server, the registration is always

encrypted under the public key of this server. An active

adversary may be able to corrupt a clients subscription

registration. However, this does not lead to differing

behavior based on the topic the client wants to subscribe

to, since receivers show do not react to the messages they

receive.

We assume that A can corrupt N − 1 servers. This

does not help him in determining the topic a client is

subscribing to, since any combination of N − 1 requests

per definition appears random to A. Only the combination

of all N requests reveals the topic.

• Communication. Since the subscription request appears

random to every server, no combination of N −1 servers

can determine which topic the client is subscribed to

by computing the response resi. Although the primary

server P has access to all individual responses, it cannot

reveal the messages, since they are obfuscated by the

shared secret sj between the client and the honest server.

208

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

C. Intersection Attacks

Definition 2 (Delivery-Guarantee): A protocol provides

Delivery-Guarantee, if all messages that are sent in a given

round are also published in the same round.

Definition 3 (Sending-Nonobligation): A protocol provides

Sending-Nonobligation, if it does not enforce when users send

messages.

Common approaches against intersection attacks [46] do not
provide Sending-Nonobligation.

Theorem 5: A protocol that provides both Delivery-Guarantee

and Sending-Nonobligation cannot provide sender-messages

unlinkability against an adversary who learns which messages

are sent if the protocol guarantees delivery of all messages

sent in a given round.

Proof: Without Sending-Nonobligation, clients may only par-

ticipate in a subset of all rounds. A observes a messages m
being published in round r Due to Delivery-Guarantee, a client

that has not participated in round r cannot have been the sender

of m.

If A can determine that another message m′ was sent by the

same sender, he can further narrow down the set of possible

senders of m and m′ via an intersection attack.

209

Authorized licensed use limited to: KIT Library. Downloaded on October 05,2023 at 15:57:13 UTC from IEEE Xplore. Restrictions apply.

