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Is the Buzz on? – A Buzz Detection System for Viral Posts in 

Social Media 

Abstract 

Today, online social networks (OSNs) constitute a major part of our lives and have, to a 

large extent, replaced traditional media for direct communication, as well as information 

dissemination and gathering. In the vast amount of posts that get published in OSNs each 

day, some posts do not draw any attention while others catch on, become viral, and 

develop as so-called buzzes. Buzzes are defined through their characteristics of 

immediacy, unexpectedness, and intensity. The early detection of buzzes is of vital 

importance for companies, public figures, institutions, or political parties – e.g., for the 

pricing of profitable advertising placement or the development of an appropriate social 

media strategy. While previous researchers developed systems for detecting trending 

topics, mainly characterised by their intensity, this is the first study to implement a buzz 

detection system (BDS). Based on almost 120,000 manually classified Facebook posts, 

we estimated and trained models for the BDS by applying various classification 

techniques. Our results highlight that, among other predictors, the number of previously 

passive users who then engage in the buzz post, as well as the number of likes given to 

the comments, are important. Evaluating the BDS over a five-month evaluation period, we 

found that these two classifiers perform best and detected over 97% of the buzzes.  

 

Keywords: Buzz Detection, Viral Phenomena, Buzzes, Decision Support, Online Social 

Networks, Social Media 

1. Motivation 

Online social networks (OSNs) are a vital platform for participation in social and public life. 

Every day, OSN users on Facebook, Twitter, or Instagram publish a vast amount of posts. 

The majority of these do not find much attention, while a few exceptional posts catch on 

and become viral. Two different types of viral phenomena exist: (1) “trending topics” that 

fulfil the properties of immediacy and intensity (such as discussions about football matches 

or the deaths of famous persons) and often re-occur over time (such as lotteries or the 

annual Movember fundraising campaign) (e.g., Asur et al. 2011; Lau, Collier, and Baldwin 

2012; Zubiaga et al. 2015), as well as (2) “buzzes” that fulfil the properties of immediacy, 

unexpectedness, and intensity (Lesot et al. 2012; Deusser et al. 2018). The main 
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difference between trending topics and buzzes is that trending topics do not necessarily 

fulfil the characteristic of unexpectedness (cf. Section 2). In this study, we concentrate on 

buzzes: Although they can have significant economic, social, and political consequences, 

they are not yet as well-studied as trending topics.   

Buzzes generally take one of three forms: firestorms, lovestorms and hot topics (Jansen 

2019). Companies that are confronted with online firestorms (Pfeffer, Zorbach, and Carley 

2014), for instance, can suffer major economic consequences. For example, in 2013, the 

Italian food and pasta company Barilla experienced such a firestorm after Barilla’s 

chairman offended homosexual people in a radio interview. Thousands of social media 

users retaliated against the company and advocated for boycotting Barilla (Facebook 

2013a, 2013b). However, buzzes can also have positive impacts. As virality plays a crucial 

role in advertising (e.g., Hayes, King, and Ramirez 2016; Moldovan, Steinhart, and 

Lehmann 2019), practitioners may use buzzes for the following purposes: (1) the pricing 

of profitable advertising placement (Berger and Milkman 2012), (2) integrating with their 

marketing strategy, like Delta Airlines did in their on-board security video (YouTube 2015), 

or (3) as a launching pad for an improvised marketing intervention (Borah et al. 2019), i.e., 

real-time marketing communication, such as Oreo’s prompt reaction to the power outage 

during the 2013 Super Bowl. 

As these examples demonstrate, there is great value in being able to detect buzzes early. 

Thus, the objective of this study is to develop a concept for buzz detection and its 

prototypical implementation, while also sharing insights on factors that are important for 

identifying buzzes early in their evolution. 

We collected metadata from public Facebook pages, manually classified almost 120,000 

posts, estimated a logistic regression (LR) model, and trained different established 

classifiers – AdaBoost, support vector machine, and random forests – in order to create 

our buzz detection system (BDS). The results of the LR yield that lagging variables (cf. 

Section 3.2.2), such as the comments’ content length and their likes, as well as deviation 

variables (cf. Section 3.2.2), such as the number of previously passive users who then 

engage in the buzz post and the number of page owner comments, are important factors 

that help to identify buzzes early in their evolution. Testing the BDS over a five-month 

evaluation period, we find that an LR with a threshold of 0.01 (i.e., “LR 1%”) and SVM 

performed best. These two algorithms jointly detected over 97% of the buzzes. Comparing 

these results to the ones of an existing model that comes closest to ours and predicts viral 

online content, we find that the existing model performs better than chance, but does not 

outperform our proposed model. 
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So far, researchers have only developed detection systems for trending topics. To the best 

of our knowledge, no study to date has tried to implement a detection system for buzzes. 

Thus, this study makes a significant contribution to research on viral online content. Our 

practical contribution lies in providing a BDS that could actually be used for brand and 

social media management. 

We structure the remainder of this paper as follows: Section 2 elaborates on the theoretical 

background behind buzzes and their detection. Section 3 extensively describes the 

architecture of the BDS. We present the evaluation of the BDS in Section 4, followed by a 

discussion in Section 5. Section 6 concludes with a summary of the study’s findings and 

limitations, and offers a glimpse into possible avenues for future research. 

2.  Theoretical Background 

This study builds on three different approaches that contribute to the detection and 

prediction of viral online content. First of all, we need to gather information that generally 

makes content go viral. Secondly, it is important to our study to know which variables 

constitute a model for viral content prediction and detection. Thirdly, the major objective of 

this study is to actually implement a detection system for buzzes. Thus, it is important to 

build on the insights of researchers who have already developed detection systems for 

trending topics.  

In the following, we introduce these three approaches on viral online content in more detail: 

(1) Researchers concentrated on identifying and understanding variables that drive 

information diffusion in social networks to explain why some online content gets more 

attention than others (e.g., Stieglitz and Dang-Xuan 2013; Heimbach et al. 2015; 

Heimbach and Hinz 2016; Akpinar and Berger 2017; Quesenberry and Coolsen 2019). (2) 

Researchers developed models that allow for the detection of viral contents (e.g., Szabo 

and Huberman 2010; Tsur and Rappoport 2012; Deusser et al. 2018; Tellis et al. 2019; 

Rietveld et al. 2020). (3) A few researchers actually built systems to detect trending topics 

(Mathioudakis and Koudas 2010; Cvijijk and Michahelles 2011; Lau, Collier, and Baldwin 

2012). From the first two approaches, we can conclude that content-, user-, and 

engagement-related variables play an important role in identifying drivers of viral online 

content; we will include these variables in the model that underlies the BDS (cf. Section 

3.2.2). As the third approach is most relevant to our work, we elaborate on existing 

detection systems in more detail to derive further avenues for improvement, which we will 

address in the present study. There are three studies in which researchers proposed 

systems for the real-time detection of viral online content (Mathioudakis and Koudas 2010; 

Cvijijk and Michahelles 2011; Lau, Collier, and Baldwin 2012). However, Mathioudakis and 
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Koudas (2010), Cvijijk and Michaehelles (2011), Lau, Collier, and Baldwin (2012) 

concentrated on trending topics, whereas we are interested in buzzes. Thus, they did not 

explicitly consider the unexpectedness characteristic of viral content. To explain trending 

topics, the authors gave examples, like the deaths of Michael Jackson and Amy 

Winehouse, a terrorist attack, as well as a National Basketball Association match. These 

examples are not highly unexpected, as we can already anticipate that news reporting and 

public discussions will accompany the death of a famous person, a terrorist attack or a 

major sports event. Our study focuses on unanticipated and unexpected cases (cf. the 

buzz definition in Section 3.2.1) – a choice that constitutes its importance and uniqueness.  

The unexpectedness characteristic is also the reason why we chose to use manually 

classified data (buzz vs. non-buzz) as our dependent variable, rather than rely on the 

number of likes, comments, or shares. After all, those factors would not necessarily have 

detected posts that fulfil all three buzz characteristics, i.e., immediacy, unexpectedness, 

and intensity. The aforementioned examples usually obtain lots of reactions, represented 

by an extraordinary amount of likes, comments, or shares in OSNs. However, they do not 

represent buzzes and would therefore have been misclassified by a model solely 

estimated and trained on engagement variables like likes, comments, and shares.  

To clarify this point, consider a post about a lottery: When a large number of users can 

participate, we anticipate that this post will receive an extraordinary number of likes, 

comments or shares, but this is not unexpected and therefore does not create a buzz 

according to our definition. Facebook live sessions are another example: Users can view 

a Facebook page owner who is live on Facebook and comment on the live session post in 

real time in order to ask questions or share reactions. Such live sessions usually result in 

an extraordinary number of comments, which, again, is not very surprising. Thus, using 

the number of comments as a dependent variable, our model would detect many posts 

that do not fulfil the buzz criteria. By instead using manually classified data to delineate 

posts as buzzes and non-buzzes, we can estimate and train models that help us to detect 

buzzes based on posts that are immediate, unexpected, and intense.  

Nevertheless, we examined the three previous studies in which the researchers developed 

systems to detect trending topics in order to analyse their approaches and derive relevant 

system features. Table 1 summarises the results of these analyses. Because of our focus 

on buzz detection, we did not seek to cluster several posts to one trend; thus, we did not 

solely rely on content-related variables, like “bursty” keywords, but instead took into 

account other indicators. Following Mathioudakis and Koudas (2010), our system allows 

for user interactions – e.g., to select Facebook pages for buzz monitoring (for the full scope 
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of user interactions, see Section 3.3). Similarly to Cvijijk and Michahelles (2011) and Lau, 

Collier, and Baldwin (2012), we will test our system in dedicated evaluation periods and 

compare it to the performance of an existing model that predicts viral online content. 

 

Table 1 Analysis of the three most relevant studies and their implications for our study 

System 
Characteristics 

Mathioudakis & 
Koudas (2010) 

Cvijijk & 
Michahelles (2011) 

Lau, Collier, and 
Baldwin (2012) 

Our Study 

Purpose  
TwitterMonitor: 
Trend Detection  

Trending Topic 
Monitoring on 

Facebook 

Trending Topic 
Identification on 

Twitter 

Buzz Detection on 
Facebook 

Approach 

1. identify “bursty” 
keywords 

2. group “bursty” 
keywords into 
trends 

3. extract 
additional trend 
information 

1. topic 
identification 

2. cluster 
detection 

 Latent Dirichlet 
Allocation (LDA) 
topic modelling 

 cluster detection 

 199,910 manually 
classified posts 

 estimate logistic 
regression/train 
different classifiers 
based on content-, 
user-, and 
engagement-related 
variables 

User Interaction 

 to submit own 
trend 
description 

 to sort trends 
by different 
criteria 

no user interaction no user interaction 

among others: 

 to select Facebook 
pages for buzz 
monitoring 

 to directly visit 
detected buzzes on 
Facebook 

 to export results for 
further analyses 

System 
Evaluation 

no system 
evaluation 

 10 experiments 
with 1,000 
posts each 
from different 
time intervals 

 performance 
metrics 
reported on 
cluster-level 

 1-month 
evaluation period 
on Twitter 

 trending topics 
reported 

 no performance 
metrics reported 

 2 evaluation periods 
(3 months + 2 
months) with more 
than 210,000 posts 

 manual 
classification  

 performance 
metrics reported on 
post-level 

 comparison to an 
existing model that 
predicts viral online 
content 

3. Architecture of the Buzz Detection System (BDS) 

In the following, we describe the architecture of our BDS. Figure 1 offers an overview of 

the architecture and summarises its components, which we will detail in Section 3.1 to 

Section 3.3. We first concentrate on the backend of the BDS and describe the processes 
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of data collection and data storage. Second, we explain the buzz detection process by 

referring to the models we trained, and then move to introduce the frontend of the BDS. 

Figure 1 Architecture of the buzz detection system (BDS) 

 

3.1 Data Collection and Storage 

The backend of the BDS fulfils the tasks of collecting selected Facebook pages and storing 

these data, which we elaborate in the following. 

In order to collect metadata from public Facebook pages, we used the official Facebook 

Graph API. We distributed the data collection over a number of independent crawlers. 

Each of these crawlers acted as a registered user of a Facebook App, which was 

specifically created for the purpose of this research, and used their own API access token. 

The crawlers were coordinated using a “Redis” database. “Redis” is an in-memory 

database, meaning it operates mainly on memory rather than disk storage, giving it vastly 

increased performance for use cases such as ours. After completing their assigned 

request, each crawler sent the returned data to the SQL server and a summary of the 

result to the scheduling server. This design allowed each crawler to be completely 

unaware of other crawlers and enabled the seamless addition and removal of crawlers. 

Each request was issued towards a specific Facebook page or post. If the target was a 

page (post), the crawler retrieved all posts (comments) as well as the current page like 

count since the page (post) was last requested. In order to maintain an up-to-date view of 
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each page and post, we had to regularly query them. As activity varies greatly among the 

monitored pages and posts – some posts receive thousands of comments per hour while 

others are never commented on – the scheduling server prioritised the request with the 

highest expected number of updates. This prioritisation depends on both the length of time 

from when the entry was last queried as well as the type and relevance (or activity rate) of 

each entry. To prevent posts with little activity from being entirely ignored, and to ensure 

that new posts are discovered quickly, we added two empirically chosen restrictions to this 

priority-based querying: At least every 20th query had to pertain to a page and 10% of the 

total requests had to be dedicated to keeping all posts updated regularly. So the entire 

database had to be queried at least once in the timeframe that it could be completely 

queried if only 10% of the queries were available. For example, if requests are processed 

at a rate of 100 requests per minute, and if there are a total of 1,000 entries, then each 

entry must be queried at least once every 100 minutes. 

In the described way, we repeatedly queried a set of 1,021 public Facebook pages from 

August 18th, 2016 until April 2nd, 2018. The collected pages belonged to famous persons 

like politicians, musicians, and athletes, but also to companies, public institutions, political 

parties, fire and police departments, and relatively unknown people from all over the world. 

Due to the rarity of buzzes, and to be sure that a buzz occurred on a given page, we 

selected 76 of the pages through daily checks on news aggregation websites reporting on 

buzzes, such as news.feed-reader.net. The other 945 pages were selected randomly by 

applying a three-level randomisation process in order to avoid any selection bias. The 

randomisation process took place on the website where Facebook lists all existing public 

Facebook pages. On the first level, we randomly chose a letter indicating the first letter of 

a Facebook page’s name in the A to Z collection provided by Facebook. For the second 

level, we randomly chose a set of the letter intervals displayed by Facebook on the 

following page. On the third level, we randomly selected pages displayed on the following 

page listing the public Facebook pages in order to monitor them with the help of the BDS. 

In total, we gathered data from 537,467 posts, including 78.85 million comments. 

We stored all data required to calculate our variables in a PostgreSQL database. The data 

comprise: page information, like page ID, page likes, and page name; post information, 

like post ID, content, timestamp, likes, and comments; and comment information, like 

comment ID, commenter ID, content, and timestamp.  

3.2 Trained Models for Buzz Detection 

As we are dealing with a binary classification problem, we employed LR and more 

advanced machine learning (ML) techniques (i.e., AdaBoost, support vector machine, and 
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random forest). We include all four approaches in the BDS. LR is useful for interpreting 

results and can be applied directly in order to derive recommendations for human decision-

makers, while the ML techniques yield superior classification results. In order to train the 

models for the BDS, we used an additional data set. In the following, we first introduce the 

training data set and the variables that we used when applying the four classification 

approaches. Afterwards, we separately introduce the four approaches and describe the 

results of the trained models. 

3.2.1 Training Data Set 

For the training data collection, we also used the official Facebook Graph API. We 

collected metadata from the 76 selected public Facebook pages (cf. Section 3.1) in the 

period between the page’s existence and the end of August 2016. In order to ensure 

enough time for buzz activity to develop, we cleaned the data by separately including only 

posts that were older than two weeks. Finally, our data set consisted of 119,910 posts. 

First, these posts were manually classified as buzzes and non-buzzes by four coders 

based on the definition of buzzes as the coding criteria (Deusser et al. 2018: p 1444): 

“A Buzz is a specific post, behaviour, or topic which initially spreads via social media and 

that suddenly draws surprising as well as extraordinary attention leading to many views. 

In this respect, a post is a text, a video, and/or a picture. It can lead to certain online 

reactions such as liking, sharing, commenting on, emulating, and/or offline reactions such 

as participating in events or purchasing a certain item. In most cases this exceptional 

attention lasts for a few days or weeks. In rare cases it lasts for a few months. At the 

beginning, in most cases there is no news agency involvement. However, later on single 

media outlets might report on the [buzz].” 

All four coders classified more than one fourth of the data in order to check their reliability. 

At least two coders classified the remaining posts. In order to verify the intercoder 

reliability, we relied on the tetrachoric correlation coefficient – a measure specifically 

designed for binary data (Carroll 1961; Divgi 1979). Table 2 summarises the results.  

Table 2 Overview of the intercoder reliability measures between all pairs of coders 

Coder 1 & 2 Coder 1 & 3 Coder 1 & 4 

n = 32,730 
r = .9320* 

n = 89,218 
r = .9172** 

n = 32,730 
r = .8786* 

Coder 2 & 3 Coder 2 & 4 Coder 3 & 4 

n = 45,697 
r = .8664* 

n = 32,730 
r = .8885* 

n = 50,483 
r = .6638* 

Note: n = number of posts both coders classified; r = tetrachoric correlation score; 
* p < .05; ** p < .01 
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The coefficient’s value of 0 (1) means no (perfect) agreement. Generally, researchers 

regard ratings with values above 0.7 as strong associations. In order to prevent any 

misclassification, the authors scrutinised the cases of disagreement and decided whether 

a post was a buzz or not. After this classification process, our data set consisted of 201 

buzzes.  

3.2.2 Operationalisation 

The dependent variable, “buzz”, is dichotomous: It is marked as 1 if it represents a buzz 

based on the definition (cf. Section 3.2.1) or 0 otherwise.  

Table 3 Descriptions of the independent variables and their descriptive statistics 

Variable 
Category 

Variable  
Reference 

Variable Variable Description Mean SD Min Max 

Lagging 
Variables 

content-
related 

firstLevel-
ContentLength 

average length of first-level 
comments’ (comments on post) 

content at time t 

64.4 
(46.35) 

102.47 
(91.78) 

0 
(0) 

11812 
(7517) 

secondLevel-
ContentLength 

average length of second-level 
comments’ (comments on 

comments) content at time t 

39.21 
(31.99) 

89.45 
(64.34) 

0 
(0) 

14632 
(7487) 

user-related repeatUsers 

number of users having commented
on a post more than once at time 𝑡

number of comments post has 
received at time 𝑡

 
.074 

(.139) 
.119 

(.344) 
0 

(0) 
1 

(52) 

engagement-
related 

commentLikes 
average number of likes the 

comments to a given post have 
received at time t 

1.02 
(.452) 

1.44 
(.929) 

0 
(0) 

39.33 
(160) 

Deviation 
Variables 

user-related 

newUsers 

number of users having commented
on a page for the first time at time 𝑡

number of all users having
commented on the post at time 𝑡

 
.332 

(.006) 
.289 

(.042) 
0 

(0) 
1 

(1) 

pageOwner-
Comments 

number of page owner comments 
on a given post at time 𝑡

average number of page owner
comments on the page owner′s page

 
.128 

(.627) 
.692 

(6.39) 
0 

(0) 

75.93 
(1451.25

) 

engagement-
related 

comments 

number of comments on a given
post at time 𝑡

average number of comments
on posts on the given page

 
.832 

(.736) 
5.81 

(3.49) 
0 

(0) 
1005.95 
(675.62) 

Note: Values in parentheses refer to the statistics of the whole data set from August 2016 until April 2018 

 

Given the available data, we derived the independent variables from theory. Meire, 

Ballings, and Van den Poel (2016) distinguished between a post’s leading and lagging 

information. Leading information represents the data being available at a certain Facebook 

profile or page before the posting of a specific post, like the total number of posts on a 
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page. Lagging information refers to the data being available after a specific post was 

published, such as the number of comments and likes the post received. As lagging 

information is only partly useful for early detection systems, we follow Meire, Ballings, and 

Van den Poel (2016) and calculate deviation variables, which are a combination of leading 

and lagging information.  

Table 3 summarises the descriptions of the variables, as well as the descriptive statistics 

of both the training dataset and the full dataset (encompassing all the data from August 

18th, 2016 until April 2nd, 2018) used to evaluate the BDS.  

Lagging variables. Two lagging variables refer to the content of the comments on a given 

post at time t. Following various researchers (e.g., Tsur and Rappoport 2012; Meire et al. 

2016), we accounted for the average length of both the content of first-level comments 

(comments on the post), i.e., firstLevelContentLength, and the average length of the 

content of second-level comments (comments on comments), i.e., 

secondLevelContentLength. By including repeatUsers in our model, we considered a user-

related variable, in line with prior researchers (e.g., Zubiaga et al., 2015; Deusser et al. 

2018). This variable signifies the number of users who have commented on a given post 

or its comments more than once, divided by the number of total comments that the post 

has received at time t. We follow Meire, Ballings, and Van den Poel (2016) and Deusser 

et al. (2018) by addressing users’ engagement on a post by including commentsLikes 

which signifies the average number of likes the comments to a given post have received 

at time t. According to Deusser et al. (2018), this is one variable that helps to detect the 

unexpectedness characteristic of buzzes. Given the example of lotteries: lotteries may 

receive a high number of comments as this represents the way of how users can 

participate in a lottery. As stated earlier, lotteries do not represent buzzes as it is not very 

surprising that many people participate and thus the post may become viral. Usually, 

lotteries’ comments do not receive many likes. Thus, by including the commentsLikes 

variable, we are able to reflect a certain unexpectedness.   

Deviation variables. Following Meire, Ballings, and Van den Poel (2016), we calculated 

deviations by combining the lagging information (drawn from a post on a certain Facebook 

page at a certain point of time t) with the leading information from the same page. One 

derivation variable reflects the number of users commenting on a given post (e.g., Zubiaga 

et al. 2015; Deusser et al. 2018). We took into account the variable newUsers by 

distinguishing between old and new users commenting on a given post. Old users are 

those who had commented on a given Facebook page before. New users are those who 

commented on a certain page for the first time. NewUsers stands for the percentage of 
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new users commenting on a given post. A further user-related variable is 

pageOwnerComments, which captures whether page owners have commented more 

often on a given post at a time t than on average on their page. PageOwnerComments 

refers to the number of page owner’s comments to a given post at time t divided by the 

average number of page owner’s comments on their respective Facebook page (Deusser 

et al. 2018). According to Deusser et al. (2018), this is a further variable that helps to detect 

the unexpectedness characteristic of buzzes. Given the example of Facebook live 

sessions, the number of page owner comments is usually pretty low, as they answer the 

questions, users pose by writing comments, live in the video. As described earlier, live 

sessions do not fulfil all buzz characteristics. Thus, pageOwnerComments is a good 

indicator, since page owners usually comment on a given post themselves if something 

unforeseen or unexpected happens and is discussed in the comments.  

A further deviation variable is comments (e.g., Szabo and Huberman 2010; Feroz Khan 

and Vong 2014; Deusser et al. 2018), which is the number of comments a post received 

at time t divided by the average number of comments posts received on that page. This 

variable indicates if a post has received more comments at a time t than the average for 

that specific page. 

Based on the training data set, Figure 2 offers a first insight into the differences between 

buzzes and non-buzzes according to (1) their temporal courses in terms of the average 

number of comments they receive, (2) the number of likes their comments receive on 

average, (3) the average number of previously inactive users commenting on the page for 

the first time (new users), and (4) the average number of users who have already been 

active by commenting on the page before (old users). 

Figure 2 Differences between buzzes and non-buzzes 
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3.2.3 Logistic Regression (LR) 

The LR estimates the likelihood of occurrence of the outcome variable depending on 

different variables. The following equation describes this regression approach: 

𝑧 =  α + β1 ∗ 𝑓𝑖𝑟𝑠𝑡𝐿𝑒𝑣𝑒𝑙𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ +  β2 ∗ 𝑠𝑒𝑐𝑜𝑛𝑑𝐿𝑒𝑣𝑒𝑙𝐶𝑜𝑛𝑡𝑒𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ + 
                  β3 ∗ 𝑟𝑒𝑝𝑒𝑎𝑡𝑈𝑠𝑒𝑟𝑠 + β4 ∗ 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠𝐿𝑖𝑘𝑒𝑠 + β5 ∗ 𝑙𝑖𝑘𝑒𝑠𝑆ℎ𝑎𝑟𝑒𝑠 + 
                  β6 ∗ 𝑛𝑒𝑤𝑈𝑠𝑒𝑟𝑠 + β7 ∗ 𝑝𝑎𝑔𝑒𝑂𝑤𝑛𝑒𝑟𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑠 + β8 ∗ 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 

where α is the Y intercept and the βs are the regression coefficients. α and β are estimated 

by the maximum likelihood method.  

Modelling the likelihood of occurrence is not based on a linear regression approach, but 

on a logistic function which is as follows:  

π(Y)  =
𝑒𝑧

1 + 𝑒𝑧
  

where π denotes the probability of the outcome variable Y (which represents a buzz) and 

e represents Euler’s number. 

We first checked the correlation among the independent variables and found that none of 

the correlations exceeded critical values (see Table A1 in the Appendix for details). In the 

following, we report the results of our LR models.  

Table 4 Summary of the results of the estimated LR models predicting buzzes 

 Model 1 Model 2 Model 3 Model 4 Model 5 

firstLevelContentLength 
1.0004** 
(.00007) 

1.0003** 
(.00007) 

1.0003** 
(.00008) 

1.0003* 
(.0002) 

1.0005** 
(.0001) 

secondLevelContentLength 
1.0004** 
(.0002) 

1.0004** 
(.0001) 

1.0003** 
(.0001) 

1.0006** 
(.0002) 

1.0005** 
(.0001) 

repeatUsers  
9.54** 
(1.58) 

9.76** 
(1.86) 

6.05* 
(.924) 

4.77** 
(1.36) 

commentLikes   
1.22** 
(.024) 

1.25** 
(.036) 

1.24** 
(.032) 

newUsers    
465.57** 
(160.73) 

181.82** 
(77.19) 

pageOwnerComments 
 
 

  
1.13** 
(.027) 

1.09** 
(.019) 

comments 
 
 

   
1.09** 
(.014) 

Constant 
.002** 
(.0001) 

.001** 
(.0001) 

.001** 
(.0001) 

.00002** 
(.00001) 

.00003** 
(.00001) 

Pseudo R2 .004 .014 .035 .2237 .4487 

Wald χ2 39.18 202.48 223.32 483.51 340.48 

BIC 2363.27 2351.84 2312.52 1894.82 1380.48 

N 94,927 94,927 94,927 94,927 94,927 

Note: Odds ratio and robust standard errors in parentheses; * p < .05, ** p < .01 
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Table 4 covers all the models we estimated in order to explain the dependent variable 

buzz. Please note that we only included those variables in our models that yielded highly 

significant results (p < .01), as Lin, Lucas, and Shmueli (2013) suggested for large 

samples. In this way, we ensured the best performances for our BDS.  

Model 1 contains the content-related lagging variables firstLevelContentLength and 

secondLevelContentLength, which both showed a significant positive influence (p < .01) 

on the outcome variable buzz. Thus, the higher the average length of the content in both 

first- and second-level comments, the more likely the considered post is a buzz. 

In Model 2, we added the user-related lagging variable repeatUsers, which had a 

significant positive influence (p < .01) on buzz as well. This finding indicates that, at time 

t, a post is more likely to be a buzz if more unique users have commented on a given post 

more than once. Model 3 added the engagement-related lagging variable commentLikes. 

It showed a significant positive influence (p < .01) on buzz, meaning that the more likes 

the comments of a given post have received on average at time t, the higher the post’s 

likelihood of being a buzz. In Model 4, we added the user-related deviation variables. Both 

newUsers and pageOwnerComments have a high positive influence (p < .01) on the 

outcome variable buzz. Thus, the more users that comment on a post on a specific page 

for the first time, as well as the more that page owners commented on posts on their own 

page, the more likely it is that the given post is a buzz. Model 5, our final model, added the 

engagement-related deviation variable comments, which has a high positive influence 

(p < .01) on buzz. The more comments a post receives, the more likely it is that this post 

displays buzz characteristics. 

Our final model yielded a Pseudo R2 of 44.87%. We obtained the largest growth in R2 

when adding the deviation variables. In order to assess the robustness of our model, we 

applied the following checks: First of all, building our model step by step, we could already 

see that our results were stable and that our variables were consistently valid. Second, as 

we are dealing with rare case events yielding from the imbalance between buzzes and 

non-buzzes, we recognise that the standard LR applied may be insufficient. Thus, we 

repeated the model estimation using the “relogit” function, as it can explicitly deal with such 

rare cases (King and Zeng 2001). Our obtained results were substantially the same, which 

further indicates our model’s robustness. When controlling for both the day of the week 

and the month of the year, we effectively found the same results. The lack of significance 

among the control variables further supports the stability of our model.  
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3.2.4 Machine Learning Techniques 

We applied AdaBoost, support vector machine, and random forest in the BDS, as they 

provided the most robust results (cf. Deusser et al. 2018) and are among the best 

classifiers (Fernández-Delgado et al. 2014). We optimised the hyper-parameters of all our 

approaches using traditional grid search – a process of determining parameters through 

exhaustive search in a predetermined interval of possible hyper-parameter values. We 

assigned a bias towards recall during this grid search, as avoiding false negatives is of 

higher priority than avoiding false positives due to the rarity of buzzes. In the following, we 

present each technique and describe its implementation relative to the BDS. 

AdaBoost (AB). AB is a ML technique that incorporates a weighting mechanism that 

focuses on misclassified observations from the previous iterations (Freund and Shapire 

1996). It sequentially re-weighs the training data by giving more weight to the incorrectly 

classified observations and less weight to the correctly classified observations. Thus, AB 

focuses on the observations that are hard to classify, whereby the final model represents 

a linear combination of all the previous models (Hastie et al. 2005). We implemented AB 

by using the “sklearn.ensemble.AdaBoostClassifier” package in Python. There are two 

parameters to set: (1) the learning rate and (2) the number of estimators. We found 0.8 to 

be the optimal learning rate and 60 estimators to be the optimal number of estimators. 

Support Vector Machine (SVM). Vapnik (1995, 1998) introduced SVM, which is based 

on statistical learning theory. As in our case of binary classification, SVMs aim to find a 

linear optimal hyperplane that maximises the margin of separation between positive and 

negative observations. Similarly, quadratic optimisation problems only concentrate on 

support vectors that represent the data points closest to the optimal hyperplane. But the 

data must be linearly separable, which is not often the case in practice. Thus, a kernel 

function is applied in order to transform the input space into a higher dimensional feature 

space and allow for a linear separation. We implemented SVM by using the 

“sklearn.svm.SVC” package in Python and found that the polynomial kernel is optimal in 

our case. 

Random Forests (RF). According to Fernández-Delgado et al. (2014), RF is the best 

multi-purpose classification technique. RF grows an ensemble of trees by aggregating all 

tree predictions based on majority voting (Breiman 2001). Thus, it overcomes limited 

robustness due to its high instability, coupled with the suboptimal performance of decision 

trees (Dudoit, Fridlyand, and Speed 2002; Hastie et al. 2005). Furthermore, RF does not 

overfit (Breiman 2001), provides variable importance (Sandri and Zuccolotto 2006), and 

only needs two parameters to be set (Larivière and Van den Poel 2005; Duda, Hart, and 
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Stork 2012): (1) the number of trees to be grown and (2) the number of randomly selected 

predictors at each node of each tree. We implemented RF by using the 

“sklearn.ensemble.RandomForestsClassifier” package in Python. Following Breiman 

(2001), we set the number of trees to 60 and the number of predictors as the square root 

of the total number of variables, i.e., three because the model includes seven explanatory 

variables.  

3.2.5 Evaluation of Models on Test Set 

We applied the final models to an additional, independent test set consisting of almost 

24,000 posts and 43 buzzes. Table 5 and Table 6 summarise the results.  

Table 5 Evaluation of the final LR model on the test set 

 

π = 0.01 π = 0.05 π = 0.2 

Actual Actual Actual 

Buzz No Buzz Buzz No Buzz Buzz No Buzz 

Prediction 
Buzz 27 215 20 28 11 10 

No Buzz 16 23,725 23 23,912 32 23,930 

Accuracy 99.04 % 99.79 % 99.82 % 

Precision 11.16 % 41.67 % 52.38 % 

Recall 62.79 % 46.51 % 25.58 % 

F1 18.95 % 43.96 % 34.37 % 

 

Table 6 Evaluation of the final machine learning technique models on the test set 

 

AdaBoost SVM Random Forests 

Actual Actual Actual 

Buzz 
No 

Buzz 
Buzz 

No 
Buzz 

Buzz 
No 

Buzz 

Prediction 
Buzz 20 13 9 18 15 5 

No 
Buzz 

23 23,927 34 23,922 28 23,935 

Accuracy 99.85 % 99.78 % 99.86 % 

Precision 60.60 % 33.33 % 75.00 % 

Recall 46.51 % 20.93 % 34.88 % 

F1 52.63 % 25.71 % 47.62 % 

 

Following Deusser et al. (2018), we evaluated the LR model with different thresholds, 

namely π = 0.01, π = 0.05, and π = 0.2. On the one hand, a rather small π of 0.01 yields 

a higher recall (63%) at a lower precision (11%). A large π-value (0.2) yields a precision 

of over 50% and a recall of under 50%. A threshold of an intermediate value, such as 0.05, 

leads to more balanced results. Consequently, we can state that the threshold value π 

depicts the trade-off between identifying buzzes correctly, on the one hand, and a high 

number of false positive classifications, on the other hand. Regarding the ML techniques, 

we find that SVM yields a precision of 33.33% and a recall of 20.93%. AB and RF 



16 

 

performed better on the test data set: The number of misclassified posts is relatively low 

for both AB (precision of 60.60% and recall of 46.51%) and RF (precision of 75.00% and 

recall of 34.88%). Considering the higher importance of avoiding false negatives due to 

the rarity of buzzes, “LR 1%”, “LR 5%”, AB, and RF all performed fairly well on the test 

data set. 

3.3 Frontend 

The frontend consists of a pyQt 5.0 UI and contains a page table, a buzz table, a method 

menu, and various buttons, as depicted in Figure 3.  

Due to privacy reasons, we blurred the names of the Facebook pages and their respective 

post IDs. The page table on the left lists all the pages that are currently monitored by the 

BDS. The buttons “Add Page” and “Remove Page” allow one to add further Facebook 

pages or to remove selected pages from the list. The buzz table in the middle lists all 

detected buzzes and keeps track of posts that were once detected as buzzes, but stopped 

fulfilling the buzz criteria as time went on. Therefore, it lists the post’s identification number, 

its creation time, the timestamp when it was first discovered as a buzz and the 

corresponding probability when the LR is chosen from the method menu. In the following 

columns, the buzz table respectively displays the timestamp for when a post is no longer 

detected as a buzz and the timestamp if it fulfils the buzz criteria again. Additionally, the 

rows are colour-coded: red refers to a buzz and green to non-buzz. Especially for the LR, 

a green-red scale shows a post’s buzz probability. The status line informs users about the 

current state of the BDS – whether it is “calculating” and with which specific method, or 

whether it is “idle” and waiting for users’ interactions.  

Figure 3 Screenshot of the functional buzz detection system 
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In the method menu on the right, users can choose from different methods (i.e., AB, SVM, 

RF, or LR) with various threshold options. In Section 4, we elaborate on these different 

methods. The “Start/Stop” button allows the user to start and stop the BDS. The “Refresh” 

button allows the BDS to continue buzz detection after users have chosen a different 

method. The “Visit on FB” button enables users to directly visit selected Facebook posts 

from the buzz table. The “Export Table” button allows users to export the current state of 

the buzz table as a CSV file in order to conduct further analyses and calculations. 

4.  Evaluation of the Buzz Detection System 

In order to evaluate the BDS, we used two different evaluation periods and compared the 

results to the ones of an existing model that predicts viral online content. The first 

evaluation period comprises two months from 1st August, 2017 until 30th September, 2017, 

while the second one covers three months from 1st November, 2017 until 31st January, 

2018. Across both evaluation periods, 213,228 posts were published with a total of almost 

23.5 million comments from 873 different Facebook pages. We purposefully chose two 

different evaluation periods in order to evaluate the BDS’ performance in a period outside 

of a festive season and in a period encompassing several festive days, such as Christmas 

and New Year. In this way, we could see how the BDS reacted to all the Christmas and 

New Year’s greetings on these days. Such posts usually satisfy two of the three buzz 

characteristics – immediacy and intensity – but do not fulfil the characteristic of 

unexpectedness. Therefore, we performed a more extensive evaluation in this second 

period, especially with regard to a more exhaustive manual classification, as well as a 

more fine-grained evaluation of the different classification techniques and their 

performance.  

Ideally, at least two coders would have classified all 213,228 posts in order to tell whether 

these posts were buzzes or non-buzzes. Potentially, every post published before the 

evaluation period could be – and some actually were – detected as buzzes within the 

evaluation period. Thus, we would have had to manually classify all the previous posts 

from the monitored pages as buzzes and non-buzzes in order to correctly perform our 

evaluation – an undertaking that is not practical in terms of time, labour and cost. 

Therefore, in order to evaluate the BDS’ performance, we limited the number of posts to 

classify, which we will describe in the following two sections. These sections also include 

all relevant details for each classification period. 
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4.1 Evaluation Period 1 

In the first evaluation phase, 57,612 posts were published with a total of almost 10 million 

comments on 813 different Facebook pages that we randomly collected for monitoring (cf. 

Section 3.1 on random data collection process). As described previously, we limited the 

number of posts to manually classify. In this first period, we classified all the posts that 

were detected as buzzes by any classification technique (n = 510). By manually classifying 

these 510 posts, we confirmed 120 posts to be buzzes. In Table 7, we summarise the 

confusion matrices of each classification technique. Within both evaluation periods, we  

chose 0.01, 0.05, 0.1, and 0.2 as the thresholds for the LRs. As can be seen, the higher 

the threshold, the better the accuracy. However, as buzzes represent rare cases, we are 

more interested in avoiding false negatives than avoiding false positives. Thus, we 

concentrated on the recall in order to evaluate the performance of the different 

classification techniques. We obtained the best results for “LR 1%”, “LR 5%”, and SVM – 

59.17%, 42.50%, and 40.00%, respectively – when referring to the posts that were 

correctly classified as buzzes at the end of the evaluation period and that were once 

correctly classified as buzzes during the evaluation period. We also see that a higher 

threshold for the logistic regressions accompanies lower recall and higher precision. 

Regarding RF, we find that the classification technique performed poorly: Only one buzz 

was detected within the evaluation period. An accuracy of almost 80% might seem quite 

high, but there is actually no recall, which renders this classification technique inferior in 

the BDS. Similarly, AB only classified one buzz correctly. Still, 35  posts were correctly 

identified as buzzes during the evaluation period, but classified as non-buzzes by the end 

of the period, which leads to a recall of 30% of detected buzzes at a specific point of time 

within the evaluation period. We discuss the potential reasons for this observation in 

Section 5. This evaluation is already a useful assessment of the system’s performance 

and the results – especially based on a logistic regression – look promising. However, this 

evaluation does not allow us to test how the system would react to truly expected events 

that go viral. Moreover, we would like to extend the number of human classifiers to ensure 

that the results are not driven by one subjective decision. We will address these 

shortcomings with the second evaluation.   

4.2 Evaluation Period 2 

In the second evaluation phase, 155,616 posts were published with a total of almost 13.5 

million comments on 821 different Facebook pages that we randomly collected for 

monitoring (cf. Section 3.1 on manual data collection process). As described previously, 

we limited the number of posts to manually classify. In order to evaluate the BDS’  

performance in this second evaluation period, we limited the number of posts by the 
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Table 7 Confusion matrices of each classification technique for the 510 posts detected within the additional evaluation period 

 

LR π = 0.01 LR π = 0.05 LR π = 0.1 LR π = 0.2 SVM AdaBoost Random Forests 

Actual Actual Actual Actual Actual Actual Actual 

Buzz 
No 

Buzz 
Buzz 

No 
Buzz 

Buzz 
No 

Buzz 
Buzz 

No 
Buzz 

Buzz 
No 

Buzz 
Buzz 

No 
Buzz 

Buzz 
No 

Buzz 

Prediction 

Buzz 33 67 20 38 14 33 12 27 27 123 1 0 1 0 

No 
Buzz 

38* 
49** 

124* 
199** 

31* 
69** 

64* 
288** 

30* 
76** 

57* 
300** 

24* 
84** 

50* 
313** 

21* 
72** 

103* 
164** 

35* 
84** 

33* 
357** 

0* 
119** 

0* 
389** 

Accuracy 69.80 % 72.94 % 72.75 % 73.53 % 57.65 % 76.67 % 76.47 % 

Precision 
33.00 %  

(51.45 %) 
34.48 %  

(57.30 %) 
29.79 % 

(57.14 %) 
30.77 %  

(57.14 %) 
18.00 %  

(28.07 %) 
100 %  

(100 %) 
100 %  

(100 %) 

Recall 
27.50 % 

(59.17 %) 
16.67 %  

(42.50 %) 
11.67 %  

(36.67 %) 
10.00 %  

(30.00 %) 
22.50 %  

(40.00 %) 
0.83 %  

(30.00 %) 
0.83 %  

(0.83 %) 

F1 
32.70 %  

(55.04 %) 
22.47 % 

(48.80 %) 
16.77 %  

(44.67 %) 
15.09 %  

(39.34 %) 
20.00 %  

(32.99 %) 
1.65 %  

(46.15 %) 
1.65 %  

(1.65 %) 

* = post classified as buzz at some point of time within the evaluation period, but classified as non-buzz by the end of the evaluation period; 
** = post was never detected as a buzz by the classification technique and is therefore classified as a non-buzz 

in parentheses () recall, precision, and F1 calculated by including the posts that were once correctly classified as buzzes (*) 
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following: we classified (1) all the posts that were detected as buzzes by any classification 

technique (n = 468); (2) 100 randomly selected posts (20 posts per SVM, LR threshold = 

1%. LR threshold = 5%, LR threshold = 10%, LR threshold = 20% because these were the 

methods with a high number of non-buzzes) that were classified as buzzes at some time 

during the evaluation period, but were classified as non-buzzes by the end of it; (3) 100 

randomly selected posts that were entirely undetected by either of the classification 

techniques. In this evaluation, three coders classified a total of 668 posts using the buzz 

definition as the coding criteria (cf. Section 3.2.1). Table 8 summarises the intercoder 

reliability measures. This approach ensures a certain level of objectivity.  

Table 8 Overview of the intercoder reliability measures between all pairs of coders 

Coder 1 & 2 Coder 1 & 3 Coder 2 & 3 

n = 668 
r = .9308* 

n = 668 
r = .9475* 

n = 668 
r = .8573* 

Note: n = number of posts both coders classified; r = tetrachoric correlation score;  
* p < .01 

 

Among the 668 classified posts, the coders identified 145 buzzes. Thereby, 102 

(= 70.34%) were actually detected as buzzes by either of the classification techniques, 

while 39 buzzes (= 26.70%) were correctly detected as buzzes by either of the 

classifications at some point of time during the evaluation period, but classified as non-

buzzes by the end of the evaluation. Four buzzes (= 2.76%) were not detected at all by 

the classification techniques. In total, 141 out of 145 buzzes were listed as buzzes in the 

“Buzz Table”, indicating that the BDS would have shown users 97.24% of the buzzes by 

combining all the classification techniques. During this second evaluation period, 

Christmas- or New-Year-related posts were not detected by either of the classification 

techniques, meaning that the BDS successfully passed this quality test. 

Figure 4 shows the average number of comments given to the detected buzzes per hour 

since the buzz post was published. The figure also depicts the standard deviations of all 

the buzzes’ comments within each hour. The vertical line at t = 3 hours represents the 

median time to detect a buzz. After this time the average of about 27.7% of all comments 

had been posted. Thus, in theory, about 72.3% comments could be moderated because 

the system has issued a warning. 
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Figure 4 Average number of comments given to the detected buzzes and their standard 

deviations per hour over time 

 

 

In Table 9, we present the overlapping and non-overlapping classification results from the 

different techniques. The “LR 1%” correctly classified nine buzzes that had not been 

detected as buzzes by any other technique. The SVM classified 34 buzzes correctly, while 

one buzz was correctly classified, and then de-classified, by the end of the evaluation 

period. These 35 posts had not been detected as buzzes by any other classification 

technique. All other posts were detected by at least two classification techniques. 

Table 10 summarises the confusion matrices of each classification technique and supports 

the findings from the first evaluation period. As in the first evaluation period, we chose 

0.01, 0.05, 0.1, and 0.2 as the thresholds for the LRs. As can be seen, a higher threshold 

accords with better accuracy. When focusing on the recall, we obtained the best results 

for “LR 1%” and SVM – 42.07 % and 38.62 %, respectively – when referring to posts that 

were still classified as buzzes at the end of the evaluation period. A higher LR threshold is 

accompanied by higher precision and lower recall. Regarding RF, and similarly to the first 

evaluation period, we found that this classification technique performed poorly: It detected 

no buzzes within this second evaluation period. Only one post was correctly classified as 

a buzz during the evaluation period, but it was classified as a non-buzz by the end of the 

evaluation period. An accuracy of almost 80% might seem quite high, but the lack of any 

recall renders this classification technique inferior in the BDS. AB also performed poorly, 

as it only correctly classified two buzz posts. Six posts were correctly identified as buzzes 

during the evaluation period, but classified as non-buzzes by the end of the period. Like 

RF, AB RF, AB featured high accuracy, but very low recall. We discuss the potential  
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Table 9 Overview on overlapping and non-overlapping classification results of the 141 posts by the different classification techniques 

 
Others LR 5% 

LR 5% & LR 
10% 

LR5% – 20% 
LR5% – 20% & 

SVM 
LR5% – 20% & 

AdaBoost 
 

1 not classified (.) 1 0 1 0 1 0 1 0 1 0  

LR 
1% 

1 0 9 4 1 1 0 18 0 6 1 1 0  

0 0 0 0 2 0 4 0 13 0 19 0 0  

 9 7 5 31 26 1 79 

 
Others LR 1% 

LR 1% & LR 
5% 

LR1% – 10% LR1% – 20% AdaBoost  

1 not classified (.) 1 0 1 0 1 0 1 0 1 0  

SV
M 

1 0 34 2 1 1 1 3 1 (6) 2 1 1  

0 0 1 2 0 0 0 0 0 1 (19) 0 0  

  35 5 2 4 3 2 51 

 

 

LR 1% & LR 
5%  

LR1% – 
10%  

LR1% – 
20% 

LR1% – 20% & SVM  
 

LR1% – 20% & 
SVM 

 

1 0 1 0 1 0 1 0  1 0  

LR 
10% 

1 (1) 0 LR 
20 
% 

1 (18) 0 
AdaBoost 

1 (1) 0 0 0 
AdaBoost 
& Rand.F. 

1 0 0  

0 5 (4) 0 1 (13) 0 2 0 2 0 0 1 0  

  5  1  2 2   1 11 
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Table 10 Confusion matrices of each classification technique for the 668 considered posts within the evaluation period 

 

LR π = 0.01 LR π = 0.05 LR π = 0.1 LR π = 0.2 SVM AdaBoost Random Forests 

Actual Actual Actual Actual Actual Actual Actual 

Buzz 
No 

Buzz 
Buzz 

No 
Buzz 

Buzz 
No 

Buzz 
Buzz 

No 
Buzz 

Buzz 
No 

Buzz 
Buzz 

No 
Buzz 

Buzz 
No 

Buzz 

Prediction 

Buzz 61 213 46 108 36 89 31 73 56 184 2 0 0 0 

No 
Buzz 

43* 
41** 

74* 
236** 

44* 
55** 

91* 
324** 

45* 
64** 

83* 
351** 

36* 
78** 

68* 
382** 

24* 
65** 

80* 
259** 

6* 
137** 

0* 
523** 

1* 
144** 

0*523*
* 

Accuracy 55.54 % 69.01 % 70.36 % 72.01 % 59.13 % 78.59 % 78.29 % 

Precision 
22.26 %  

(32.81 %) 
29.87 %  

(45.45 %) 
28.80 % 

(47.65 %) 
29.81 %  

(47.86 %) 
23.33 %  

(30.30 %) 
100 %  

(100 %) 
– 

Recall 
42.07 % 

(71.72 %) 
31.72 %  

(62.07 %) 
24.83 %  

(55.86 %) 
21.38 %  

(46.21 %) 
38.62 %  

(55.17 %) 
1.38 %  

(5.52 %) 
0 % 

F1 
29.11 %  

(45.02 %) 
30.77 % 

(52.48 %) 
26.67 %  

(51.43 %) 
24.90 %  

(47.02 %) 
29.09 %  

(39.12 %) 
2.72 %  

(10.46 %) 
– 

* = post classified as buzz at some point of time within the evaluation period, but classified as non-buzz by the end of the evaluation period; 
** = post was never detected as a buzz by the classification technique and is therefore classified as a non-buzz 

in parentheses () recall, precision, and F1 calculated by including the posts that were once correctly classified as buzzes (*) 
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reasons for this observation in Section 5. 

As this second evaluation period was one month longer than the first one, and encompassed 

a major festive season, we performed a more extensive analysis on the time each classification 

took. In order to evaluate the different classification techniques’ speed in detecting a buzz, we 

would have had to monitor each post manually in order to note the moment the post really 

became a buzz. In the majority of the cases, the classification techniques detected posts as 

buzzes within a few seconds, minutes, or hours. However, published posts sometimes receive 

little attention until a few days, weeks, or even months later. Of course, manually monitoring 

each single post in order to evaluate the speed of each classification technique is not an 

efficient practice. Thus, we decided to report on the elapsed time between a post’s publication 

and each technique’s timestamp for detecting the buzz. First, we report the amount of time 

each classification technique took on average to identify the true positives. Table 11 

summarises these results. 

Table 11 Average time each classification technique took to classify a post as a buzz 

 All Buzzes 
Buzzes classified  

in < 100 days 

Buzzes 
classified  

in < 14 days 

Buzzes 
classified  
in < 1 day 

LR 1% 
n = 61 

48 days, 
08:30:07 

n = 50 
5 days, 23:53:49 

n = 45 
2 days, 

06:52:56 

n = 22 
06:18:52 

LR 5% 
n = 46 

54 days, 
05:26:32 

n = 36 
7 days, 00:06:44 

n = 31 
2 days, 

03:09:51 

n = 16 
07:40:32 

LR 10% 
n = 36 

67 days, 
08:33:09 

n = 27 
6 days, 14:49:08 

n = 23 
1 day, 19:10:22 

n = 14 
08:33:43 

LR 20% 
n = 31 

55 days, 
21:52:53 

n = 25 
7 days, 04:30:38 

n = 21 
2 days, 

16:35:31 

n = 11 
07:31:44 

AdaBoost 
n = 2 

2 days, 05:07:48 
n = 2 

2 days, 05:07:48 

n = 2 
2 days, 

05:07:48 

n = 1 
02:17:28 

SVM 
n = 56 

30 days, 
17:53:42 

n = 50 
3 days, 19:53:27 

n = 45 
1 day, 17:42:35 

n = 30 
06:31:03 

 

In order to account for outliers (the buzz posts that took an exceptional amount of time for our 

classification techniques to detect), we report on not only the average times for all classified 

buzzes, but also buzzes that were detected in less than 100 days, in less than 14 days, and in 

less than one day. As can be seen, on average the SVM is generally the fastest at detecting 

buzzes. With an increasing threshold, the LRs naturally take longer to identify a post as a buzz. 

If AB detects a buzz, it usually does so quite quickly. As RF failed to detect a single buzz within 

the evaluation period, we cannot report any results for this classification technique. 
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Next, we focused on the posts that at least two techniques detected as buzzes and compared 

the speed of the classification techniques. Thereby, we also considered posts that were 

classified as non-buzzes by the end of the evaluation period, although they had been identified 

as buzzes previously. For this reason, we utilised the timestamp of a post’s first detection as a 

buzz. Table 12 summarises the results. Here, we also removed outliers: posts for which either 

SVM or the LRs with their various thresholds took an exceptionally long period of time (on 

average over 5,000 hours) to discover the post as a buzz compared to the respective other 

classification techniques. Besides, we performed additional analyses on these outliers and 

found that the majority of these posts stemmed from very large Facebook pages with a number 

of page likes above the 95% percentile of all the pages we monitored. Additionally, we 

examined those posts where at least one method detected the post as a buzz at a certain point 

of time during the evaluation period, but classified it as a non-buzz by the end of the evaluation 

period. We found that, in most cases, the classification techniques swung between classifying 

a post as a buzz and a non-buzz within seconds – namely, whenever a new comment was 

added to the post.  

Table 12 Average times for LR 1%, AdaBoost (AB), SVM are faster than the respective other 
techniques 

faster 
than 

LR 1% LR 5% LR 10% LR20% AB RF SVM 

LR 1% – 
n = 50 
6 days, 

17:03:01 

n = 45 
11 days, 
02:19:45 

n = 37 
12 days, 
09:13:40 

n = 2 
0 days, 

01:08:53 
– 

n = 16 
23 days, 
10:17:54 

LR 1% 
w/o 

outliers 
– 

n = 49 
6 days, 

20:14:51 

n = 44 
11 days, 
08:11:02 

n = 36 
12 days, 
17:00:20 

n = 2 
0 days, 

01:08:53 
– 

n = 15 
2 days, 

09:19:55 

AB 
n = 2 
1 day, 

10:08:21 

n = 2 
3 days, 

05:12:45 

n = 2 
4 days, 

22:54:40 

n = 2 
9 days, 

05:16:14 
– 

n = 1 
205 days, 
08:58:08 

n = 1 
3 days, 

20:42:52 

SVM 
n = 13 

57 days, 
17:11:29 

n = 6 
56 days, 
02:50:44 

n = 5 
67 days, 
17:00:13 

n = 4 
16 days, 
06:08:51 

n = 3 
2 days, 

01:19:02 
– – 

SVM w/o 
outliers 

n = 9 
1 day, 

08:11:00 

n = 4 
0 days, 

07:44:49 

n = 3 
1 day, 

00:43:02 

n = 3 
3 days, 

11:50:23 

n = 3 
2 days, 

01:14:02 
– – 

 

4.3 Model Comparison 

In order to further evaluate the buzz detection system’s performance, we compare our 

proposed model to a model that comes closest to ours predicting the virality of news articles 

based on online sharing behaviour. Heimbach and Hinz (2018) postulated this model building 

upon the findings by Berger and Milkman (2012). We used Model 2 in Table 7 (Heimbach and 

Hinz 2018) to re-run our buzz detection system on the data sets of the two discussed 
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evaluation periods. In evaluation period 1, the considered model detected 25,537 posts as 

buzzes and in evaluation period 2, there were 63,291 posts detected. Due to two reasons we 

decided to take the top 1% of the detected buzzes in these two different periods and manually 

classified 887 posts: (1) the high number of posts and its impracticality in terms of time, labour 

and cost to manually classify these posts, and (2) the fact that our thorough manual 

classification of the training data set of almost 120,000 posts proved that buzzes rarely happen 

and the number of detected buzzes by the new model was exceptionally high. In the first 

evaluation period, seven out of 255 detected posts were actually classified as buzzes (i.e., 

2.75%). In the second evaluation period, 28 out of 604 detected posts were buzzes (i.e., 

4.64%). These results show that the model chosen for this comparison is definitely working 

better than chance. However, the high number of false positives is due to the fact that many 

posts were detected as buzzes that did not fulfil the buzz characteristic of “intensity” as there 

were no or hardly any reactions to the posts in forms of likes, shares, and comments. It was 

also obvious that in the second evaluation period the model detected many posts as buzzes 

that represented Christmas wishes so that the above average reactions to these posts were 

not very surprising and the model did not pass the test as described earlier in this section. 

These findings underline that more sophisticated models are necessary in order to detect the 

unexpectedness characteristic of buzzes as outlined in Section 3.2.2 and as incorporated in 

our model for buzz detection. 

5.  Discussion 

In the following, we discuss our theoretical contributions and the managerial implications.  

Contribution to Theory. The BDS is the first detection system for buzzes – one type of viral 

phenomena that have not been analysed extensively yet. While most researchers have 

focused on trending topics (e.g., Mathioudakis and Koudas 2010; Cvijijk and Michahelles 2011; 

Lau, Collier, and Baldwin 2012), we recognised the fundamental economic and societal 

importance of buzzes and the need for their early detection in the mere flood of information in 

OSNs. We believe that incorporating the unexpectedness characteristic of buzzes makes this 

study’s whole research aim unique and crucial. Without accounting for the unexpectedness of 

posts, we would only discover postings as buzzes that can easily be anticipated – for example, 

lotteries, Facebook live sessions, and well wishes on holidays and birthdays. Such episodes 

are not necessarily of interest to companies, public figures, institutions, or political parties. 

Thus, our central contribution is actually detecting postings that fulfil all three buzz 

characteristics: immediacy, unexpectedness, and intensity.  

By leveraging insights from previous studies about identifying buzzes early in their evolution, 

we developed the first system for detecting buzzes. Evaluating the whole system over a 5-
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month evaluation period, we found that the theoretically derived variables for buzz detection, 

as well as the estimated and trained models that housed them, perform exceptionally well in 

practice. Applying different classification techniques, we found that by combining the results of 

SVM and “LR 1%”, it is possible to detect almost 100% of buzzes. Based on our results, we 

can contribute the following insights for any future research: SVM singularly and correctly 

detected over 24% of buzzes, even those had not been detected by all other classification 

techniques. The posts in question were mostly characterised by a high engagement rate, i.e., 

they obtained most of the likes, shares, or comments on the respective page. Yet, this does 

not always hold true in the case of very large Facebook pages with more than 14 million page 

likes. Moreover, SVM generally detected buzzes faster than the respective other classification 

techniques. “LR 1%” is the second-best classification technique in terms of detecting buzzes 

that other techniques missed (6.21%) and in terms of speed. As with posts detected only by 

SVM, these were posts with a high engagement rate except for those stemming from Facebook 

pages with more than 10 million page likes. Unexpectedly, and in contrast to Deusser et al. 

(2018), AB and RF performed poorly. This may be due to the fact that these techniques usually 

operate with many more variables. We restricted the variables to ones that performed very well 

within the LR model and to those that were highly significant in our large sample, as suggested 

by Lin, Lucas, and Shmueli (2013). However, when we ran RF on the whole data set in order 

to examine its performance a bit closer, the BDS detected 23 posts as buzzes. The BDS 

classified 14 of the 23 as buzzes and the remaining nine as non-buzzes. Having three coders 

manually classify the 14 posts confirmed that these posts were correctly classified as buzzes. 

Eight of the nine other posts were also manually classified as buzzes. Thus, at a particular 

moment while classifying these posts, RF had already correctly classified the posts as buzzes. 

In one case, the post was correctly classified as a non-buzz in the end. Therefore, we can 

conclude that if RF detects a buzz, then it is very accurate. Regarding the speed, it took RF 

the following times to detect the buzzes: for all buzzes (n = 14): 20 days, 01:31:01, for all 

buzzes detected in less than 100 days (n = 13): 7 days, 02:40:08, for all buzzes detected in 

less than 14 days (n = 12): 4 days, 11:07:53, and for all buzzes detected in less than 1 day (n 

= 1): 00:59:53. As with the other classification techniques, there were solitary buzzes detected 

after a long delay. Other than that, the speed is comparable to the other classification 

techniques. 

Regarding the detection speed in general, we discovered that not every post goes viral and 

becomes a buzz directly after its publication. In some cases, posts lie dormant until a sudden 

interest transforms them into buzzes. Thus, the detection speed has to be interpreted very 

carefully because a rather long detection time does not necessarily mean something negative. 

It could merely be a result of an unknown catalyst. However, it is almost impossible to identify 

this trigger and ascertain the speed with which the classification technique correctly detects a 
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buzz. Hence, we resorted to using the publication date of a post, even though the act of 

publishing is not necessarily the trigger for a buzz. However, this might be overruled if several 

other classification techniques detect a buzz much earlier than one single technique struggling 

to detect it at all.  

We also discovered that for a few posts, long detection times could be a result of larger 

Facebook pages. With pages that have over 1.6 million likes, the high activity could be making 

it more difficult for the BDS to detect buzzes. In terms of the comments, the posts themselves 

were also active for a relatively long time and mostly detected as buzzes when the last 

comments were written on the post. We have to analyse this interrelation in future research.  

Regarding the quick oscillation between the detection of a buzz and classifying it as a non-

buzz, we analysed the respective posts. Although it is difficult to explain the decisions of the 

classification techniques, we expect that writing a new comment to a post may have exceeded 

some threshold for classifying this post as a buzz – even though at the timestamp of a comment 

in the following second, the post could already be classified as a non-buzz again. Taking into 

account all these aspects, this study valuably contributes to and extends the existing literature 

on viral online content, both in general and in terms of their detection systems. 

Managerial Implications. Practitioners, such as companies, public figures, institutions, or 

political parties, can use the BDS for various reasons – the most general one being the 

detection of buzzes amidst the flood of information in OSNs. Based on our results, the most 

relevant indicators for buzzes are user-related variables (newUsers and repeatUsers) as well 

as reactions to comments on the post (commentLikes). Regarding the number of users 

involved in buzzes, it is important to notice that buzzes have quite a large coverage. If posts 

attract new users, they are more likely to become a buzz, which may then create a cycle where 

the buzz attracts even more new users. This may be amplified further by news agencies that 

attract additional users who would commonly be passive participants (Reynolds 2002; Roberts, 

Wanta, and Dzwo 2002). Consequently, a positive feedback loop with new users can lead to 

buzzes. A further relevant indicator for buzzes is a high number of users that repeatedly 

interact with each other through commenting or replying to comments, thereby leading to vivid 

discussions. According to Holt (2004), most participation in discussions arises when people 

debate different viewpoints. This is in line with the buzz type “hot topics” where people debate 

controversial topics (Jansen 2019) and it explains the high number of users who repeatedly 

comment on the same post or reply to the same post comments. Furthermore, if users initiate 

lots of reactions within the discussions in the form of likes to the post’s comments, the post is 

more likely to become a buzz. This underlines the fact, in line with previous research (Lesot et 

al. 2012; Deusser et al. 2018), that buzzes are characterised by intense activity.  
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Practitioners can also make use of different existing buzz types (Jansen 2019) in order to 

develop a social media strategy that is appropriate to each specific type: (1) Some buzzes may 

carry joyful and positive messages that enjoy great popularity. Reacting to such buzzes – also 

known as lovestorms (Ács and Pagh 2017) – or incorporating them into social media or 

marketing strategies can be of considerable benefit for companies, public figures, and political 

parties. For example, Delta Airlines included several lovestorms in their on-board security 

video (YouTube 2015). (2) Buzzes can also carry harmful and negative messages that can 

cause massive waves of outrage. These buzzes – also known as firestorms (Pfeffer, Zorbach, 

and Carley 2014) – could encompass companies’ newly released products, the actions of 

public figures, or statements from political parties. A timely response to the firestorm by the 

concerned person or company may prevent any further reputation or image loss. For example, 

the food company Barilla became the target of such a firestorm in 2013 when Barilla’s chairman 

offended homosexuals in a radio interview. Barilla reacted to this public outrage by posting two 

videos on Facebook that were meant as an apology (Facebook 2013a; Facebook 2013b). (3) 

Other buzzes may represent so-called hot topics that include discussions, e.g. about refugees, 

obesity, or gender differences. Some parties may want their names to appear in the ongoing 

discussion and will act as thought-leaders by commenting on hot topics to assert their positions 

and persuade others to their side (Rooderkerk and Pauwels 2016). For example, a German 

consumer organisation involved in investigating and comparing goods and services triggered 

a hot topic discussion by publishing a report on potential carcinogenic substances in well-

known cosmetic products (Facebook 2015). Among the general discussion on this topic, some 

users commented by referring to their carcinogenic-free products or posting links to their blogs.  

Furthermore, practitioners can use the displayed buzzes for profitable advertising placement 

– as a post enters buzz territory, advertising platforms can charge higher prices to place 

adverts next to these kinds of posts. Moreover, they can analyse buzzes from other Facebook 

pages in order to bolster the chance of their own posts becoming buzzes. In this analysis, they 

can incorporate Berger’s (2013) six STEPPS (social currency, triggers, emotion, public, 

practical value, stories) for contagious products and ideas. For example, social media 

managers can use the results of the BDS to analyse the buzzes that their competitors 

experienced or generated, and further examine the triggers behind a certain post becoming a 

buzz, including its topic and the story others created around it. They can even exploit detected 

buzzes as the starting point for engaging in improvised marketing intervention (Borah et al. 

2019), which is the creation and execution of a real-time marketing communication in response 

to an external event. The BDS is also relevant for practitioners who want to monitor the number 

of buzzes generated by their own social media strategies. Practitioners may be able to 

determine the impact of their buzzes in terms of the number of followers gained or even the 
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firm revenue generated. By incorporating the six STEPPS, they can also compare non-buzzes 

and buzzes in order to infer the marketing strategies that lead to the most impactful posts.  

6.  Conclusion 

OSNs play a major role in today’s world. Every day, the virtual world is inundated with posts, 

but only some catch on and become viral phenomena. Previous research has already 

intensively studied trending topics (Mathioudakis and Koudas 2010; Cvijijk and Michahelles 

2011; Lau, Collier, and Baldwin 2012), but so-called buzzes have yet to be extensively 

analysed (Deusser et al. 2018). Buzzes fulfil the criteria of immediacy, unexpectedness, and 

intensity, which distinguishes them from well-studied trending topics. Their detection can be of 

great importance, e.g. for determining the social media strategy of companies, public figures, 

institutions, or political parties. By collecting metadata from public Facebook pages and 

manually classifying almost 120,000 posts, we estimated an LR model and trained different 

classifiers (i.e., AB, SVM, and RF) in order to build the first BDS. The results of the LR offer 

initial insights into important factors that aid buzz identification early in their evolution. These 

are lagging variables, such as the comments’ length and likes, as well as derivation variables, 

like the number of new users and the number of page owner comments. Evaluating the BDS 

over a five-month period, we found that SVM and “LR 1%” performed best, together detecting 

over 97% of the buzzes.  

Our efforts deviate from previous detection systems for viral online content in five key ways: 

We (1) focus on the detection of buzzes and thereby consider the unexpectedness 

characteristic, (2) manually classify posts to form the foundation of the BDS, (3) take into 

account prominent variables identified in previous research on viral online content, (4) account 

for user interaction, and (5) evaluate the BDS over a five-month evaluation period. Thus, we 

theoretically contribute new insights upon which further studies can build. We have provided a 

BDS that is intended for practical application while also suggesting recommendations for 

practitioners, e.g. to combine the results of SVM and “LR 1%” in order to obtain the best results. 

Of course, this study features several limitations that represent avenues for future research. 

As we could not classify all posts as buzzes or non-buzzes, there is the chance that the BDS 

missed some buzzes. Likewise, AB and RF performed poorly because of the small number of 

variables used for classification. Thus, future studies could incorporate more variables and 

train more advanced models. Granted, this might require more data from Facebook that are 

not readily available. Future studies could also focus on optimising the BDS for larger 

Facebook pages (in terms of page likes) so that buzzes on these pages are detected earlier. 

In terms of detection speed, future research may also examine variables that help to detect 

buzzes in an even faster time. For example, the number of comments given in the first two 
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hours after the publication of a post could be a promising predictor worth analysing. To 

generalise our findings, similar studies should be conducted on other social networks, such as 

Twitter or Instagram. 
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Appendix 

Table A1 Correlation matrix of the independent variables 

 Variable (1) (2) (3) (4) (5) (6) (7) 

(1) firstLevelContentLength 1.000       

(2) secondLevelContentLength .182* 1.000      

(3) repeatUsers .237* .275* 1.000     

(4) commentLikes .153* .236* .181* 1.000    

(5) newUsers .095* .071* .090* .121* 1.000   

(6) pageOwnerComments .056* .072* .192* .054* .053* 1.000  

(7) comments .021* .055* .056* .065* .098* .152* 1.000 

Note: * p < .01 

 


