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ABSTRACT
The rigorous analysis of anonymous communication protocols and

formal privacy goals have proven to be difficult to get right. Formal

privacy notions as in the current state of the art based on indistin-

guishability games simplify analysis. Achieving them, however can

incur prohibitively high overhead in terms of latency. Definitions

based on function views, albeit less investigated, might imply less

overhead but aren’t directly comparable to state of the art notions,

due to differences in the model.

In this paper, we bridge the worlds of indistinguishability game

and function view based notions by introducing a new game: the

‘ ‘Exists INDistinguishability” (E·IND), a weak notion that corre-

sponds to what is informally sometimes termed Plausible Deniabil-
ity. By intuition, for every action in a system achieving plausible

deniability there exists an equally plausible, alternative that results

in observations that an adversary cannot tell apart. We show how

this definition connects the early formalizations of privacy based

on function views [13] to recent game-based definitions [15]. This

enables us to link, analyze, and compare existing efforts in the field.
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1 INTRODUCTION
Currently deployed Anonymous Communication Networks (ACNs),

like Tor [7] or Freenet [6], address a variety of anonymous commu-

nication concepts. Plausibe deniability in these cases, for instance,

requires that, given the observation of an adversary, for any action

of a user (e.g., downloading a file) there exists at least one alter-

native user that is equally plausible to have performed the action.

Hence, users can plausibly deny being the involved in any action.

While precise and comparable protection goals are important

for anonymous communication, informal definitions are common.

Goals are, if at all, defined independently of each other, rarely

compared, and their relationship hardly understood. Understanding

the complete problem space and the effective protection protocols

provide from attacks is thus challenging, especially for fundamental

goals such as plausible deniability. One example is a recent attack

against Freenet’s Opennet mode, that has been demonstrated [16]:

In this mode, a node establishes untrusted connections, and an

adversary that merely controls a single node can determine when

a directly-connected victim is downloading a certain file. It hence

shows that Freenet does not achieve plausible deniability in this

setting.

Rigorous analysis necessitates a formal definition of the chosen

security objectives, and it is an inevitable requirement for the corre-

sponding security proof. The protection goals in most implemented

systems, however, are defined ad-hoc or on an informal basis. In a

recent effort to improve this situation by providing unambiguous

definitions and comparability, Kuhn et al. [15] have developed an

extensive hierarchy of formalized protection goals, called privacy
notions. They are based on indistinguishability games, a funda-

mental definition structure that can be instantiated with different

communication properties, defining, which information is to be

protected by the protocol under scrutiny. Thereby they focus on a

protection in the worst case scenario and ensure that the adversary

cannot distinguish even two of the selected users. Their exten-

sive hierarchy of notions includes all known indistinguishability

game-based approaches [1, 10, 12].

Other formal tools were proposed to formalize privacy as well [2,

11, 13, 20–22]. For this work, we are interested in the approach by

Hughes and Shmatikov [13] based on function views. They express

privacy as the uncertainty of the adversary about a hidden function,

e.g. the function that maps communications to senders. Close to

our intuition for plausible deniability, they require the adversary to

remain uncertain, and for each action there has to be at least one
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other option in which it has not been performed by the suspected

user. They define opaqueness to this end, which implicitly repre-

sents a best case approach to privacy — an interesting counterpart

to the known worst case indistinguishability notions.

While indistinguishability games are a predominant way to ex-

press privacy due to their well understood relation to cryptography

and the corresponding proofs, to understand the relations to and

make use of results for the function view definitions, we need to

find a bridge between these worlds.

In this work, we investigate how definitions based on function

views can be expressed by means of indistinguishability games

to make them comparable. We then go on to analyze the Peer-to-

Peer (P2P) scenario, in which the anonymization service is realized

by cooperation of all participants, without relying on any external

services. Deriving a new, corresponding performance bound for

the existing worst-case notions, we demonstrate the necessity of a

plausible deniability notion in this scenario, and define its game.

We specify the new E·IND game as an indistinguishability based

notion that can express several variants of plausible deniability. In

doing so, we are creating a framework to easily express deniability

for different actions, built on the conventional formal foundations

from cryptography (e.g., IND-CPA) and digital signatures (e.g., EUF-

CMA). We discuss how our new game-based definition connects to

the function view based definitions of Hughes and Shmatikov [13].

Finally we exploit our consolidation of models to formally compare

our new definitions to the existing hierarchy of worst-case privacy

notions [15]. We show that E·IND expresses weaker guarantees and

thus allows to rigorously prove the weak protection of plausible

deniability in anonymous communication.

In summary, our main contributions are:

• P2P network bound on known indistinguishability
notions.We analyze the limits of existing privacy notions

and prove a highly restrictive performance bound for P2P

networks under these notions. Thus we are demonstrating

the importance of weaker notions of privacy.

• Formal definition for plausible deniability. We intro-

duce a general game-based formalization of plausible deni-

ability in Anonymous Communication Networks (ACNs).

The versatility of indistinguishability games allows us to

generalize to arbitrary communication properties.

• Relation to existing notions. We link and relate our new

notion to other indistinguishability games and privacy no-

tions [15] as well as function views [13], enabling a compre-

hensive comparison.

The rest of the paper is organized as follows: In Section 2, we

provide background information on privacy notions in Anonymous

Communication Networks, before we show the necessity of weaker

notions with our performance bound in Section 3 and then intro-

duce our new game-based notion, E·IND, for plausible deniability in

Section 4. In Section 5, we show the equivalence of our game-based

notion and privacy notions using function views. Section 6 addi-

tionally details the relationship between ‘ ‘Exists INDistinguishabil-
ity” (E·IND) and the recently proposed notions by Kuhn et al. [15],

that we refer to as ‘ ‘All INDistinguishability” (A·IND). We discuss

our findings in Section 7 and conclude the paper in Section 8.

2 PRIVACY NOTIONS FOR ACNs
Anonymous Communication Networks (ACNs) do not only provide

confidentiality of the communicated message, but conceal different

types of metadata of the communications. Their specific protection

goals, however, differ widely, as well as their assumptions made

regarding considered adversaries and their usage scenarios. This

has led to various different implementations, such as Tor [7], Mix-

Nets [5], Crowds [19], Freenet [6], or DC-Nets [4] to protect the

user’s privacy in online communications. All of them protect the

communication metadata to some extent. Some, however, only aim

to unlink the sender from the message and receiver [7], while others

hide even more user behavior, like the sending frequencies [4]. Next

to the protection goals, also the assumed adversary’s capabilities of

various ACNs differ from each other. Some attackers observe a small

portion of the network only [7], others can act globally [4]. More-

over, the protocols are built upon different network models: Some

ACNs protect users as a service and allow to reach receivers that

are unaware of the ACN (e.g., web servers on the Internet through

TOR) [7], while others protect the communication between users

of the ACN as an integrated system [6]. In this work, we focus on

ACNs that exchange unicast and unidirectional messages between

their users, but do not restrict the network model otherwise.

2.1 Informal Goal Definitions
Informal descriptions of privacy goals in these networks as pro-

vided by Pfitzmann and Köhntopp [18] unfortunately are prone

to misinterpretations [15]. Formal privacy notions are thus es-

sential to unambiguously express privacy goals and protection

guarantees. While different approaches have been proposed in the

past [2, 9, 11, 15, 20–22], formalizing security as indistinguishability

games has become the state of the art [1, 3, 15]. Subsequently in

Section 2.2, we elaborate the currently most extensive framework

for such privacy definitions by Kuhn et al. [15]. We will refer to it

as ‘ ‘All INDistinguishability” (A·IND) in the remainder of the paper,

as it implies that all eligible scenarios are indistinguishable and the

adversary can freely choose any two within the game. Additionally,

in Section 2.3, we detail the underlying concept of using function

views to define anonymity as proposed by Hughes and Shmatikov

[13]. Our new notion, defined in Section 4, allows to compare these

fundamentally different approaches.

2.2 The “All INDistinguishability” Notions
The A·IND notions assume a setting of multiple unicast and uni-

directional communications, each transferring a message from the

sender to the receiver. We further denote the sequence of all com-

munications, which have happened and are happening over the

ACN, as a scenario.
We focus on sender unobservability, one of the easiest to grasp

notions defined in this model. It requires that it is impossible for an

adversary to identify a certain agent to be the sender [18] of any

message. It is formalized by challenging the adversary to make this

differentiation in a game: Over multiple repetitions, the challenger

randomly decides whether the real sender or somebody else was

sending and asks the adversary to determinewhowas sending based

on her observations. If the adversary has a strategy that allows for
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a non-negligible advantage in correctly identifying the sender over

mere guessing, the ACN does not provide sender unobservability.

In a similar manner, Kuhn et al. [15] further define a comprehen-

sive set of other protection goals based on the protected communi-

cation properties, such as who sent what or who has been sending

how often. Their hierarchy of these protection goals provides a

useful groundwork for our comparison.

After this first intuitive description of the A·IND concept, we

provide a formalization in Section 2.2.1, as the foundation of our

plausible deniability definition of ACNs. Later on in Section 2.2.2,

we then detail the properties considered in the rest of the paper.

2.2.1 Formalization. The game compares sequences of commu-

nications that we refer to as scenarios s ∈ S . Every communication

is a tuple (a,b,m,aux) of the sending and receiving agents a,b (of

the agents setA), the exchanged messagem ∈ M and some auxiliary

information aux ∈ AUX . The sets of agents A, messages M , and

auxiliary information AUX are finite.
1
The ACN itself is modeled

by a Probabilistic Polynomial Time (PPT) algorithm Π : S → T that

maps scenarios S to transcripts T . Transcripts include the observa-
tions that the adversary makes in the real network. They can e.g. be

lists of the observed packets and timings, but their precise format

is only of importance for the ACN analysis, not for the definition of

notions. The adversary model hence is inherent in the transcripts

and thus in the ACN algorithm Π.
The A·IND game inspects whether an adversary can distinguish

one pair of self-chosen scenarios, as visualized in Fig. 1. If the adver-

sary cannot even distinguish one self-chosen pair, i.e. the worst case

for the analyzed protocol, all eligible scenarios are indistinguishable.
In the first step, the adversaryA chooses two scenarios s0, s1 ∈ S

such that the analyzed property p holds: p(s0, s1). Both scenarios

are submitted to the challenger C, who verifies the property p and

chooses a challenge bit b. Subsequently, she executes scenario sb
in the ACN Π and returns the corresponding transcript , which
contains the adversary’s observations of the execution. Finally,

the adversary submits her guess of the challenge bit b ′ and wins

the game if b = b ′. Note that a random guess yields a winning

probability of
1

2
. We hence denote Π as p−A·IND private iff the

adversary’s winning probability is at most negligibly higher than
1

2
.

Cp−A·IND Ap−A·IND

(s0, s1) s.t. p(s0, s1)

b
$

←− {0, 1}
transcript ← Π(sb )

transcript

b′

return 1 if b = b ′ else 0

Figure 1: The experiment Expp−A·INDΠ,A : Vertical lines repre-
sent the life lines of all actors , arrows the passing of mes-
sages between them.

1
We assume a limited packet size on the communication medium.

Definition 2.1 (p−A·IND Anonymity). Given a property p, an
ACN Π, and the PPT adversary A, we define an experiment

Expp−A·INDΠ,A as Algorithm 1.

Algorithm 1 The Expp−A·INDΠ,A experiment

1 (s0, s1, stateA ) ← A(1
κ , g e t P a i r )

2 a bo r t i f ¬p(s0, s1)

3 b
$

←− {0, 1}

4 transcript ← Π(sb )

5 b ′ ← A(1κ , a t t a c k , transcript , stateA )

6 return 1 i f b = b ′ e l s e 0

The advantage of adversary A is given by

Advp−A·INDΠ,A (1κ ) :=

����Pr [Expp−A·INDΠ,A → 1

]
−
1

2

���� · 2.
The adversarial algorithm A is denoted valid for p−A·IND iff it

runs in PPT and guarantees that p(s0, s1) holds. The challenger C is

denoted valid iff she guarantees that the transcript is either Π(s0)
or Π(s1) with equal probability. The ACN Π is p−A·IND private iff

for every valid PPT-adversaryA the function Advp−A·INDΠ,A (1κ ) is

negligible in the security parameter κ.

Remark 1. Note that we can compare notions based on properties:
If the property is more restrictive (accepts fewer pairs of scenarios),
it results in a weaker (easier to achieve/harder to break) notion as
the adversary has less freedom when attacking it. Thus, for any two
properties pa and pb , the following statement holds: If ∀s0, s1 ∈ S :

pa (s0, s1) ⇒ pb (s0, s1) then pb−A·IND⇒ pa−A·IND .

2.2.2 Notions and Properties. From the choice of all notions we

focus on one specific sender notion to investigate plausible deni-

ability: Sender Unobservability, SO−A·IND. This notion allows to

input any scenarios that only differ in the senders. The receivers,

messages and auxiliary information are identical in both scenar-

ios and thus do not help to distinguish the cases. Note that this

requires that nothing about the senders can be learned by the adver-

sarial observation (not even which senders are sending messages).

However, the number of real communications in both scenarios

and information about receivers and messages can be learned. To

express this formally, the property Equal but senders ES is defined

to accept any scenarios that have the same receivers, messages, and

auxiliary information in each communication. In this paper, we use

Sender Unobservability SO−A·IND synonymously with ES−A·IND.

2.3 Function Views
Hughes and Shmatikov [13] represent scenarios with functions. For

instance, the sender function f : C → A specifies which agent

a ∈ A is the sender of communication c ∈ C . As the sending agent
for a communication depends on the scenario, we write fs for the
f function of the scenario s ∈ S .
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2.3.1 Function Knowledge. Hughes and Shmatikov formally

model privacy in terms of the observer’s uncertainty about a hidden

function. They consider three different kinds of knowledge about a

function.

Graph Knowledge F . The function graph represents the linking

of in- and outputs, modeled as tuples F ⊆ C ×A. Knowing it thus
entails the complete knowledge of the f function. With partial

knowledge e.g., multiple entries for the same communication ((c,a)
and (c,a′)) uncertainties of the adversary (a or a′ send in c) are
expressed.

Image Knowledge I . The image is the subset of the output values

assumed by the function e.g., Im f ⊆ A. If the adversary knows the

complete image she learns all agents that did the action e.g., for f
all active senders. With partial knowledge I ⊂ Im f the observer’s

uncertainty is expressed.

Kernel Knowledge K . The kernel describes which inputs induce

the same output, modeled as tuples K ⊆ C ×C . So if (c0, c1) is in
the kernel knowledge K : f (c0) = f (c1). For f knowing a tuple of

the kernel entails knowing that two communications are sent by

the same agent, but not knowing by whom.

From Knowledge to Function Views. The tuple N = ⟨F , I ,K⟩ com-

bining the knowledge is the function knowledge. However, the dif-
ferent types of knowledge are not independent. There are thus

function knowledge tuples that do not state what the adversary can

actually infer. Knowing e.g.,K = C×C , i.e. all communications have

the same sender, and I = {a}, i.e. a is sending, allows to conclude

the graph as (c,a) for all c , no matter what the graph knowledge

actually states. Function views are the knowledge tuples that state
the maximal adversary’s knowledge directly, i.e. no other than the

stated knowledge about F , I or K can be derived from the other two

kinds of knowledge.

2.3.2 Equivalence and Opaqueness. The observational equiva-
lence relation ∼: S × S → {0, 1} expresses which scenarios can be

distinguished based on the adversary’s observations. If two sce-

narios s0 and s1 are observational equivalent, then the adversary

cannot be sure if the function is fs0 or fs1 . The observational equiv-
alence induces equivalence classes, i.e. groups of scenarios that

cannot be distinguished from each other.

Opaqueness. For each knowledge type at least one opaqueness

definition is introduced. These opaqueness definitions require to

hide their corresponding type of knowledge.

Example: Image Opaqueness. A function view, i.e. the observa-

tions for one equivalence class, is image opaque if the image knowl-

edge is empty: I = ∅. Intuitively speaking, the adversary does not

know a single agent that is guaranteed to be active. A complete

ACN Π is image opaque on the f function if the function view for

every equivalence class is image opaque. In other words, in every

equivalence class and for every agent, there must exist a scenario

in the same class, in which the agent is not active:

∀s0 ∈ S . ∀a ∈ A . ∃s1 ∼ s0 . a < Im fs1

Note that “∀s0 ∈ S” is equivalent to “∀ equivalence classes”, as

every scenario is part of exactly one equivalence class.

3 LIMITS FOR THE A·IND GAME
Achieving any privacy notion against an adversary naturally re-

quires a certain minimum overhead in practice. In the following,

we show that achieving even the Sender Message Unlinkability
(SM)L−A·IND notion as defined by Kuhn et al. [15], requires an

impracticable high overhead in a P2P network. Sender message

unlinkability (SM)L−A·IND is weaker than sender unobservability

and requires that every agent is sending the same number of mes-

sages in both scenarios, but which message is sent by whom can

differ in both scenarios.

We demonstrate a lower bound on the overhead necessary to

achieve (SM)L−A·IND against an adversary that passively controls

a) one forwarding node in a P2P setting and b) can tell which

message she forwards (e.g., by recognizing a message identifier)
2
.

We further assume that the routes of different communications are

chosen independently from each other.

For our estimate, we use the Predecessor Attack [16, 23]: consid-

ering an adversarial node to forward a message from a neighbor, it

can easily deduce that this message has more likely been sent by

said neighbor, than a random, different user. In an indistinguisha-

bility game, an adversary thus decides on her neighbor as the first

potential sender and another random user as the second. If she

gets to forward exactly one of the two relevant messages from her

neighbor, she may guess that this is the first forwarding of the

message and can blame her neighbor as the sender of this message.

In all other cases, the adversary guesses randomly.

Given that the routes of messages are chosen independently, an

adversary following this strategy has a non-negligible advantage of

winning. To estimate the advantage, we calculate her probabilities

to observe the relevant message either when it has been sent by

her neighbor, or when it is sent by the alternative candidate.

We thereby derive that to achieve (SM)L−A·IND without allow-

ing any adversarial advantage at all, we need to relay our message

(or a copy of it) as often as the number of users of the P2P network

and “not much less often” for our requirement of a negligible advan-

tage. This of course are very high costs. We hence are convinced of

the demand for a weaker, yet still meaningful privacy definition,

and we will define such a notion in Section 4.

Theorem 3.1. For (SM)L−A·IND privacy with

Adv(SM)L−A·INDΠ,A = 0

a passively observing adversary that can recognize the message, and
any efficient protocol [14] where the routes of different communica-
tions are chosen independently the following equation must hold

n ≤ h ,

wheren refers to the number of user nodes andh denotes the maximum
number of hops the message or a copy of it is forwarded (excluding
the intended receiver).

2
This requirement is e.g. given in networks that handle published content based

on content identifiers, like Freenet [6].
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For (SM)L−A·IND privacy with negligible Adv(SM)L−A·INDΠ,A (ac-
cording to Definition 2.1) in the otherwise identical setting the follow-
ing equation must hold

n −
n · η

poly(κ)
≤ h ,

where h is defined as above, κ denotes the security parameter, poly is
a polynomial function, and η refers to a user’s maximum number of
neighbors.

Proof. We start with describing the attack:
(1) The adversary decides on two challenge messages m,m′,

receiver B and two senders A,C with A being a randomly

chosen neighbor of her own node and C being a random

other agent. She builds the scenarios such that A sendsm
to B in the first one andm′ to B in the second. The other

message is sent by C to B in each scenario.

(2) The adversary waits the time that forwarding a message for

the maximum number of hops h allowed for the original

message can take (e.g. h rounds if a message is forwarded

once a round).

(3) If the adversary only forwarded the messagem from A, she
guesses 0. If she only forwardedm′ from A, she guesses 1.
Otherwise she guesses randomly.

Advantage. From the advantage definition:

Adv =
����Pr(Exp→ 1) −

1

2

���� · 2
which is equivalent to:

Adv = Pr(A guesses 0 | b = 0) − Pr(A guesses 0 | b = 1)

Equivalence:

Adv =
(
Pr(Exp→ 1) −

1

2

)
· 2

= (0.5Pr(A guesses 0 | b = 0) + 0.5Pr(A guesses 1 | b = 1) − 0.5)2

= Pr(A guesses 0 | b = 0) + Pr(A guesses 1 | b = 1) − 1

= Pr(A guesses 0 | b = 0) + (1 − Pr(A guesses 0 | b = 1)) − 1

= Pr(A guesses 0 | b = 0) − Pr(A guesses 0 | b = 1)

Note that in the case that both messages or none are sent over

the observed link, the probability of guessing each way is
1

2
and

thus this cancels out in the above equation. Hence, the following

probabilities remain:

Adv = Pr(only m is sent over the link | A is the sender of m)

− Pr(only m is sent over the link | C is the sender of m)

Intuitively, the probability for the message to be transmitted over

the observed link is much higher in the case that A, the adversary’s
neighbor, is the sender, than if C , a remote node has sent it. Thus,

we want the probability that A sends to the malicious neighbor

as small as possible, and the probability that a message sent by

C is forwarded over the adversarial node and A to be as large

as possible (or at least similarly high as the former). As A has

to send over some neighbor and cannot know which neighbor

is malicious, for any efficient protocol Pr(m is sent over the link |
A is sender ofm) ≥ 1

|N (A) | , where N (A) is the set of neighbors of

A. Also, no efficient protocol can forward C’s message over more

than h links and as the protocol cannot know which link of the

total n · η directed links is observed, Pr(m is sent over the link |
C is sender ofm) ≤ h

n ·η holds for any efficient protocol. Note, that

both probabilities do not depend on which message is sent. Using

the assumptions that the routes are chosen independent of each

other, we can now calculate Adv:

Adv =Pr(m is sent over the link | A is sender ofm)·

Pr(m’ is not sent over the link | C is sender ofm′)

−Pr(m is sent over the link | C is sender ofm)·

Pr(m’ is not sent over the link | A is sender ofm′)

Adv ≥
1

|N (A)|
· (1 −

h

n · η
) −

h

n · η
· (1 −

1

|N (A)|
)

Adv ≥
1

|N (A)|
−

h

n · η

Adv ≥
1

η
−

h

n · η

Bound. Thus, for Adv = 0:
h
n ·η ≥

1

η ⇐⇒ h ≥ n

and for negl. Adv, for any positive polynomial poly:
1

poly(κ) > Adv ≥ 1

η −
h
n ·η ⇐⇒ h > n −

n ·η
poly(κ)

□

Remark 2. As SO−A·IND is strictly stronger than (SM)L−A·IND,
this bound is also a lower bound for SO−A·IND.

4 THE “Exists INDistinguishability” GAME
Recall, that ‘ ‘All INDistinguishability” requires that any two compa-

rable scenarios (i.e., scenarios that fulfill the properties in question)

are indistinguishable to an adversary. Plausible deniability, how-

ever, requires that at least one other option is an equally plausible
explanation for the observations. For a user sending a specific mes-

sage, it hence must be equally plausible that she did not send it,

that is, either another user or nobody might have sent the respec-

tive message.

We hence introduce the ‘ ‘Exists INDistinguishability” (E·IND)
game to express that at least one other, indistinguishable scenario
exists that fulfills a specific property. There does not necessarily
have to be only one indistinguishable alternative, but the existence
of at least one is sufficient for this goal.

Game Formulation. Formulating a game for plausible deniability

requires a few adaptations to the existing notions: We require one
other option for deniable actions in the real world. In the game,

we thus allow the adversary to decide the action of the first sce-

nario s0 as a representation of the real world. However, a single
indistinguishable scenario fulfilling the properties is sufficient. The

adversary can thus no longer pick the second scenario s1. If we
would allow her to choose, she would decide on the easiest dis-

tinguishable scenario. Instead, we present the adversary with the

scenario that is most difficult to distinguish, i.e. the closest match

to her chosen scenario, that fulfills the properties.

Based on this decision, we can then use the same structure as

described in Section 2.2 to decide whether the chosen scenarios can

be distinguished by the adversary, or not.
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Outline. In Section 4.1, we begin with a discussion on how to

find an indistinguishable scenario for our game-based formulation,

beforewe elaborate onwhy identical scenarios need to be prohibited

in Section 4.2. Next, we introduce the advanced set of parameterized

properties in Section 4.3. The fundamental change from A·IND to

E·IND further requires us to adapt two details in the A·IND game

that make no difference for the A·IND game, but are important for

E·IND: the protocol state and randomness in Sections 4.4 and 4.5.

Finally, we provide the formal definition of the E·IND notions in

Section 4.6.

4.1 Finding the Alternative
The most difficult scenario for the game can only be identified by

a trusted challenger and comprises two sub-problems: 1) What

should happen if there is no other scenario fulfilling the properties

in question and 2) what if there are multiple such other scenarios?

If for the analyzed property p and the chosen scenario s0, there
is no other matching scenario s1 that fulfills the properties, there is
no alternative to plausibly deny s0 being the real scenario. In such a

case the adversary wins the game immediately, as the requirement

is not satisfiable. Formally, we define satisfiability as follows:

Definition 4.1 (p-Satisfiability). For a property p and a scenario

s0 ∈ S we say “s0 isp-satisfiable”, if there exists a s1 ∈ S withp(s0, s1).

If for the analyzed property p and chosen scenario s0, there are
multiple matching scenarios s1 that fulfill the properties, the closest
match has to be considered in the game. The closest match is the sce-

nario that is the hardest to distinguish, hence, where the adversarial

observations are as identical as possible. While some protocols pick

the alternative explicitly during operation (e.g., QuisQuis [8] or

Monero [17]) for other protocols, e.g., P2P networks, choosing a

neighbor of the victim is an obvious heuristic. However, even if such

an indistinguishable scenario s1 exist, the challenger may not be

able to find it in polynomial time. We thus require the adversary to

have a non-negligible advantage against every other challenger that
decides on a scenario s1 fulfilling the properties of scenario s0. Iter-
ating all challengers includes the one that picks the closest match.

In contrast to A·IND, where we consider the maximal advantage,

in the E·IND game, we are instead interested in the adversary’s

minimal advantage for all scenarios fulfilling the properties, as we

only require that one alternative is indistinguishable.

4.2 Prohibiting Identical Scenarios
Most properties from the A·IND notions, such as SO−A·IND, are
reflexive and allow to pick two identical scenarios: p(s0, s0). In the

A·IND game the adversary decides on the easiest to distinguish

scenarios. She hence never picks these and allowing this choice

has no ramifications. For E·IND, however, this renders the notions

useless, as the adversary cannot win against the challenger that

picks s0 = s1 and, thus, any such notion is trivially achieved, while

really no deniability is attained. We thus adapt SO as follows and

introduce a new property:

Forced Change Property. In addition to the Equal but senders prop-
erty, ES , that restricts to only change the senders, we require the

inequality property , to hold, which states that s0 and s1 cannot
be identical. This property still allows to attack the empty scenario

s0 = φ, that is, a scenario in which no communication happens at

all,
3
which is unsatisfiable under (ES ,,)−E·IND. Hence, we further

require at least one communication in s0 by defining the new prop-

erty len>0 and define sender unobservability for the E·IND game

as SO−E·IND = (ES ,,, len
>0)−E·IND.

Remark 3. Note that neither ,, nor len>0 constrain SO−A·IND.
The adversary has no advantage by attacking s0 = s1 and s0 = φ
induces s1 = φ as the receivers and messages have to be equal in both
scenarios.

4.3 Parameterized Properties
We need to ensure that a single user is sending something in one,

but not the other scenario, that is, the user can deny the action of

sending anything at all. For this, the adversary has to additionally

choose a sender in the first scenario, such that the challenger knows

which user must not send a message in the second. Thus, the second

scenario does no longer only depend on the first, but also on the

chosen sender. To handle such additional parameters, we define a

new type of property:

Definition 4.2 (Parameterized Property). A parameterized property
pτ : S ×S → {0, 1} is a T -indexed family of relations (pτ )τ ∈T with

the parameter tuple τ from the set of possible parameters T .

In the following we simply write p for the whole family (pτ )τ ∈T .
With this, we can then define a property that allows the user to

plausible deny to have sent anything at all:

Definition 4.3 (Property Inactive Sender). Given two scenarios

s0, s1 ∈ S and an agent a ∈ A the following holds:

Sender1a (s0, s1) ⇐⇒ a does not send anything in s1

The set of possible parameters is the set of agents: T := A.

4.4 Protocol State
In A·IND the protocol state is only indirectly defined, as the protocol

model starts in an initial state and protocol queries are used to

modify it [15]. We however make the protocol state explicit and

include it directly in the protocol model to Π : Θ × S → T , where
Θ is the set of protocol states. This protocol state is generated at

random according to some distribution θ
D

←− Θ that corresponds to

the situation of the protocol which is currently analyzed.

Moreover, we define who has access to the state. In A·IND the

adversary gets partial knowledge of the state via the observations

she learns from the returned transcripts and the challenger does not

make any decisions dependent on the state. In E·IND the challenger

however benefits from knowing the state when deciding on the sec-

ond scenario. Therefore, we introduce a perspective on the state for

both, the challenger and the adversary. The adversarial knowledge

of the state, e.g., the neighbors of the adversarial nodes in a P2P

network, are contained in her perspective: perspA : Θ → P(Θ),
where P(Θ) is the product set of protocol states from the random

oracle. In the game, the adversary is allowed to make use of her

perspective to select the attacked scenarios. For the challenger we

assume that she has read access to the complete protocol state.

3
Note, the difference to an empty communication as defined in Kuhn et al. [15].

An empty communication just expresses that at this point no communication happens.
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Note, that the protocol state is explicitly not generated or even

manipulated by the challenger.

Remark 4. While an explicit protocol state in A·IND notions does
not change their expressiveness, it does provide a handy shortcut.

4.5 Randomness
For achieving anonymity nearly all protocols rely on some random-

ness (e.g., the shared secrets between participants in DC-Nets [4]

or the randomly chosen delays and keys in Mix-Nets [5]). In A·IND

the corresponding randomness is implicit in the protocol model

and as the challenger has no decision that depends on it, this is

sufficient. For our E·IND game however, knowing the randomness

gives the challenger a benefit in picking the second scenario. We

hence differentiate two options: Either the challenger knows the

randomness or she does not.

In the first case, a sufficient number of random bits may already

be included in the protocol state and can be used to execute the

scenario’s communications. As discussed previously in Section 4.4,

the challenger has full read access to the protocol state. She thus is

able to predict every future random decision before deciding for

the alternative scenario s1. In very rare cases, she is even capable of

picking the single correct scenario that matches this rare situation.

For the second case, in which the challenger does not know the

introduced randomness, the random bits are generated after the
challenger decides for an alternative scenario. Here, our notion re-

sults in a single alternative scenario for any future random decision.

The probability that this scenario is indeed indistinguishable is part

of the adversary’s advantage.

As an example, consider a protocol that guarantees to randomly

pick one of 1000 users as the alternative sender—e.g., only one ran-

dom user is sending dummy traffic. In the first case, the challenger

is able to choose the correct sender for the alternative scenario as

she has read access to future random decisions. In the second case

her chances are just 0.1 % to choose an indistinguishable sender.

Formalization. In the first case the challenger is stronger and thus

the notions offer a weaker protection. We thus prefer and use the

second case in the following. We therefore adapt the model of Π
again and add a random input: Π : Θ × S × {0, 1}∗ → T .

Cp−E·IND Ap−E·IND

θ
D

←− Θ
θ perspA (θ )

(s0,τ )

chooses s1 with pτ (s0, s1)

b
$

←− {0, 1}

transcript ← Π(θ , sb , r
$

←− {0, 1}∗)
(s1, transcript)

b′

return 1 if b = b ′ else 0

Figure 2: The Expp−E·IND
Π,A,C

experiment.

4.6 The E·IND Experiment
We can now describe our new game between challenger C and an

adversary A formally. Fig. 2 provides a depiction of the E·IND ex-

periment that operates based on the (parameterized) property p:
At first, the adversary learns about the protocol state θ according

to her capabilities
4
and then she submits s0 ∈ S as well as the

parameter tuple τ . If s0 is not pτ -satisfiable, the adversary wins the

game. Otherwise, the challenger chooses s1 such that pτ (s0, s1) and

generates a random bit b
$

←− {0, 1}. Note that the challenger has no

information about the randomness r in the protocol execution and

cannot predict future (random) decisions. Scenario sb is executed

in the ACN Π and the challenger returns both the transcript ←
Π(sb ) and scenario s1 to the adversary. Based on the transcript , the
adversary makes her guess on the executed scenario b ′ and wins if

her guess is correct. With this experiment, we can define achieving

p−E·IND similar to A·IND before:

Definition 4.4 (p-E·IND Anonymity). For an ACN Π, an PPT-

adversary A, a challenger C, and a property p with the possible

parameter set T and the parameter tuple τ ∈ T , we define the

Expp−E·IND
Π,A,C

experiment in Algorithm 2. An adversarial algorithm

A is valid iff it is PPT. Algorithm C, in turn, is valid for p−E·IND
iff it guarantees that C(1κ , s0,τ ) returns a scenario s1 such that

pτ (s0, s1) holds. If no such scenario exists, there exists no valid

challenger either.

Algorithm 2 The Expp−E·IND
Π,A,C

experiment

1 θ
D

←− Θ

2 (s0,τ , stateA ) ← A(1
κ , g e t S c e n a r i o ,perspA (θ ))

3 s1 ← C(1
κ , s0,τ ,θ )

4 b
$

←− {0, 1}

5 transcript ← Π(θ , sb , r
$

←− {0, 1}∗)

6 b ′ ← A(1κ , a t t a c k , s1, transcript , stateA )

7 i f b = b ′ : return 1

8 e l s e : return 0

The advantage of adversary A against a specific challenger C is

defined as

Advp−E·IND
Π,A,C

(1κ ) :=
���Pr [Expp−E·INDΠ,A,C

→ 1] −
1

2

��� · 2 ,
while the general advantage of her is defined as

Adv
p−E·IND
Π,A (1κ ) :=

{
min∀ valid C

(
Advp−E·IND

Π,A,C
(1κ )

)
if ∃ valid C

1 else

The ACN Π is p−E·IND iff Advp−E·INDΠ,A (1κ ) is negligible in κ for

all valid adversaries.

Remark 5. Infinitely many valid challengers may exist. Disprov-
ing an E·IND privacy notion can therefore be harder than proving it.

4
This, for instance, includes her neighbor’s IP addresses in a P2P network.
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5 COMPARISON TO FUNCTION VIEWS
We compare our ‘ ‘Exists INDistinguishability” (E·IND) game to the

notions established byHughes and Shmatikov [13] that are based on

function views. We manage to carve out the relations between both,

showing that the E·IND notion generalizes upon function views.

While our formulation allows for any arbitrary property, Hughes

and Shmatikov propose a variety of concrete deniable actions to

build their notions of opaqueness.
To show the equivalence of E·IND and the opaqueness defini-

tions, proposed by Hughes and Shmatikov, we define our interpre-

tation of observational equivalence and match the opaqueness and

the E·IND definition at the example of image opaqueness.

5.1 Indistinguishability
We define observational equivalence of two scenarios as their indis-

tinguishability in the A·IND game. We define the Exps0,s1Π,A exper-

iment similar to Expp−A·INDΠ,A , except that the adversary is only

allowed to attack the pair (s0, s1).
5

Definition 5.1 (Indistinguishability). Let s0, s1 ∈ S be two scenar-

ios. s0 and s1 are indistinguishable iff no PPT algorithm A has a

non-negligible advantage Advs0,s1Π,A .

The binary relation ∼: S × S → {0, 1} is 1 if the scenarios are

indistinguishable and 0 otherwise.

The only requirement on observational equivalence is that it is
an equivalence relation. Therefore we show in Appendix A.1 that

our interpretation of ∼ is indeed an equivalence relation:

Lemma 5.2. The binary relation ∼ is an equivalence relation.

Remark 6. An ACN can be described completely by its ∼ equiva-
lence classes. We therefore describe systems in upcoming proofs only
by their equivalence classes.

A·IND Indistinguishability. In p−A·IND the adversary can attack

every pair of scenarios (s0, s1) with p(s0, s1). Therefore every such

pair must be observational equivalent to achieve p−A·IND:

p−A·IND⇔ ∀s0, s1 ∈ S : p(s0, s1) ⇒ s0 ∼ s1

5.2 Matching Opaqueness and E·IND Definition

Recall Image Opaqueness as

∀s0 ∈ S . ∀a ∈ A . ∃s1 ∼ s0 . a < Im fs1

This equation can be generalized with parameterized properties:

∀s0 ∈ S . ∀τ ∈ T . ∃s1 ∼ s0 . pτ (s0, s1)

Notice that anything with an ∀ quantifier is chosen as worst

case for the protocol. This corresponds to the game adversary in an

indistinguishability game. Anything with an ∃ quantifier has to be

chosen in favor of the protocol. This corresponds to the challenger

in the game. Finally, the scenarios that are allowed to be compared

correspond to the property in the game.

5
Formally this is equivalent to Exp{(s0, s1)}−A·INDΠ,A where {(s0, s1)} is the

binary relation that only holds for s0 and s1

Adversary’s choice︷              ︸︸              ︷
∀s0 ∈ S . ∀τ ∈ T .

Challenger’s task︷   ︸︸   ︷
∃s1 ∼ s0 .

Property︷    ︸︸    ︷
pτ (s0, s1)

Notice that this description matches our E·IND game. The ad-

versary is choosing s0 and the parameters τ . The challenger is

responsible to show the existence of an indistinguishable scenario

that fulfills the property.

Example: Property Inactive Sender is Equivalent to Image Opaque-
ness. Property Inactive Sender (Sender1A) from Definition 4.3 re-

sults in the Sender1A−E·IND notion that is equivalent to image

opaqueness, as it requires that the chosen agent a is not sending in

the second scenario, i.e. a < Im fs1 .

6 COMPARISON TO A·IND
An in-depth understanding of the relations between privacy goals

allows for an easier analysis and better development of ACNs. We

thus compare our new ‘ ‘Exists INDistinguishability” (E·IND) no-
tions with the ‘ ‘All INDistinguishability” (A·IND) notions from
the state of the art hierarchy in order to highlight their relations.

We have already intuitively stated that A·IND expresses stronger

guarantees as E·IND that, however, might not even be needed in

all use cases but require an extensive performance overhead (see

Section 3). We thus establish the weaker E·IND as provable guaran-

tee for networks aiming at plausible deniability. Formally, we can

prove that the following holds for a relevant subset of properties:

pa−A·IND⇒ pb−E·IND , (1)

where pa and pb can be different, but related properties. In subse-

quent sections, we develop a general toolbox for a hybrid analysis

of ACNs, using A·IND and E·IND notions.

6.1 Relevant Subset of Properties
For an easier comparison, we introduce characteristics of properties,

which are similar to the earlier introduced satisfiability requirement.

Completely Satisfiable Properties. If a combination (s0,τ ) exists
s.t. s0 is not pτ -satisfiable, the E·IND notion cannot be achieved by

any ACN. The adversary simply attacks this combination and wins

the game. If no such combination exists, we denote the property as

completely satisfiable property:

Definition 6.1 (Completely Satisfiable Property). Apropertyp with
the possible parameter set T is denoted as completely satisfiable
property iff ∀s0 ∈ S .∀τ ∈ T : pτ (s0, ·) is satisfiable.

Intuitively this means that the adversary cannot win in the E·IND

game by submitting a scenario without any matching alternative,

as there is no such scenario. To win the E·IND game, she needs to

distinguishing the transcripts of two scenarios.

Efficiently Satisfiable Properties. For p−E·IND we iterate over all

valid challengers. We hence include the challenger who chooses

a matching s1, if such a scenario exists. For the following proofs

finding a matching scenario in an efficient way is however useful.

We denote any property for which we can efficiently construct a

matching s1, if it exists, as efficiently satisfiable property:
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Definition 6.2 (Efficiently Satisfiable Property). A property p with

the possible parameter set T and the parameter tuple τ ∈ T is

denoted as efficiently satisfiable property iff a PPT function γ :

S × T → S exists s.t.

∀s0 ∈ S .∀τ ∈ T : γ (s0,τ )

{
∈ {s | pτ (s0, s)} if s0 is pτ -satisfiable
= ⊥ else

For all properties mentioned in [15] γ is an easy construction

and in general, most reasonable properties fulfill at least one of the

two requirements.

6.2 Comparing p−A·IND with p−E·IND
In A·IND the adversary is allowed to choose both scenarios. In

contrast, in E·IND the challenger is choosing the second scenario.

Hence, intuitively speaking, E·IND requires a stronger attack that

works against any second scenario, i.e., E·IND is easier to achieve

and harder to break, and thus a weaker notion. However to translate

an E·IND to an A·IND attack, p has to be completely and efficiently

satisfiable, as otherwise we cannot know how to choose the second

scenario during the attack. In Appendix A.2 we formally show that:

Lemma 6.3. For every completely and efficiently satisfiable prop-
erty p with the possible parameter set T and the parameter tuple
τ ∈ T it holds that: p−A·IND ⇒ p−E·IND.

Proof Sketch. A reduction proof:As the propertyp is completely
and efficiently satisfiable, the PPT adversary on p−A·IND can simply
generate the second matching scenario by using the γ function. Fig. 3
visualizes this fact.

Cp−A·IND A
p−A·IND
Ap−E·IND Ap−E·IND

θ
D

←− Θ
θ perspA (θ )

perspA (θ )

(s0,τ )

s1 ← γ (s0,τ )(s0, s1,τ )

b
$

←− {0, 1}

r
$

←− {0, 1}∗

transcript ← Π(θ , sb , r )
transcript

(s1, transcript)

b′

b′

Figure 3: p−A·IND ⇒ p−E·IND

6.2.1 Comparing A·IND with E·IND for Related Properties. If we
know that some property implies another property, we can show a

relation between the corresponding games.

Parameterized Properties in A·IND. In Section 2, we mentioned

that for non-parameterized properties pb−A·IND⇒ pa−A·IND, if

pa ⇒ pb . To show this likewise for parameterized properties, we

need to handle the parameter tuple appropriately. Even if the possi-

ble parameter sets are equal (Ta = Tb ), they may get interpreted dif-

ferently for each property. We hence must transform τa ∈ Ta into a

parameter tuple for pb s.t. the implication paτa (s0, s1) ⇒ pbτb (s0, s1)
holds. We denote this as parameter transformation. With this we

show the following statement in Appendix A.3:

Lemma 6.4. Letpa andpb be two parameterized properties with the
possible parameter sets Ta and Tb and the parameter tuples τa and τb .
If an efficient parameter transformation functionωb : S×S×Ta → Tb
exist s.t.

∀τa ∈ Ta .∀s0, s1 ∈ S : paτa (s0, s1) ⇒ pbωb (s0,s1,τa )
(s0, s1)

then pb−A·IND ⇒ pa−A·IND.

Proof Sketch. With the efficient function ωb we can do a re-
duction proof similar to Lemma 6.3. We provide a visualization in
Fig. 4.

Cp
b−A·IND A

pb−A·IND
Ap

a−A·IND Ap
a−A·IND

θ
D

←− Θ
θ perspA (θ )

perspA (θ )

(s0, s1,τa) s.t. p
a
τa (s0, s1

)

τb ← ωb (s0, s1,τa ) s.t. pbτb (s0, s1)(s0, s1,τb )

b
$

←− {0, 1}

r
$

←− {0, 1}∗

transcript ← Π(θ , sb , r )
transcript

transcript

b′

b′

Figure 4: pb−A·IND ⇒ pa−A·IND

Remark 7. We denote ωb as ωb because it produces the parameter
tuple for pb . In the next subsection, we see the ωa function, which
produces the parameter tuple for pa .

Parameterized Properties in E·IND. In A·IND the adversary is

restricted by the property because she chooses the attacked pair

(s0, s1). A more restrictive property results in a harder problem for

the adversary, and thus a weaker A·IND notion (see Lemma 6.4).

In E·IND, instead, the challenger is restricted by the property. A

more restrictive property might exclude the indistinguishable sce-

narios. Therefore a more restrictive property results in a stronger

E·IND notion. Informally pa−E·IND implies pb−E·IND, if an effi-

cient parameter transformation exists s.t. pa ⇒ pb . Note that this
implication is inverse to the A·IND variant.

There is one more detail: if a scenario-parameter combination

is satisfiable with itself, the minimal advantage for attacking this

scenario is 0. We hence have to treat these cases separately for our

statement, which we prove in Appendix A.4:
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Lemma 6.5. Let pa and pb be two parameterized properties with
the parameter sets Ta and Tb and the parameter tuples τa ∈ Ta and
τb ∈ Tb . If an efficient function ωa : S × Tb → Ta exists s.t.

∀τb ∈ Tb .∀s0, s1 ∈ S : pbτb (s0, s0) ∨(
paωa (s0,τb )

(s0, s1) ⇒ pbτb (s0, s1)
)

then pa−E·IND ⇒ pb−E·IND

Proof Sketch. We distinguish the following cases and argue as
following in each:

(1) s0 is not pbτb -satisfiable: both notions are unachievable.
(2) pbτb (s0, s0) holds: cannot be a successful adversary.
(3) ¬pbτb (s0, s0) and s0 is p

b
τb -satisfiable and p

a
ωa (s0,τb )

-satisfiable:
we show a reduction proof.

(4) ¬pbτb (s0, s0) and s0 is p
b
τb -satisfiable but s0 is not p

a
ωa (s0,τb )

-
satisfiable: pa−E·IND is unachievable.

Remark 8. The result for non-parameterized properties is similar.
If both properties are non-parameterized, we check if

∀s0, s1 ∈ S : pb (s0, s0) ∨
(
pa (s0, s1) ⇒ pb (s0, s1)

)
.

If pb is parameterized, but pa is not, we can use ωa : (s0,τb ) 7→ ().
Otherwise, the efficient function ωa is needed, like for two parameter-
ized properties.

6.3 Conjuncted Properties
Conjuncted properties require that the combination of two or more

properties holds. This way individual properties can be used as

building blocks for more complex notions. Subsequently, we discuss

such combinations for A·IND and E·IND.

6.3.1 Conjuncted Properties in A·IND. For the non-parameterized

properties it is clear that pa−A·IND ⇒ (pa ,pb )−A·IND and

pb−A·IND ⇒ (pa ,pb )−A·IND. This is due to the fact that (pa ∧

pb ) ⇒ pa and analog for pb . For parameterized properties the same

is true, because ifpaτa (s0, s1)∧p
b
τb (s0, s1) holds, thenp

a
τa (s0, s1) holds

by definition. We detail this in Appendix A.5.

6.3.2 Conjuncted Properties in E·IND. We find a similar relation-

ship for E·IND. But the direction of the implication is inverted as

before. We show in Appendix A.6 that:

Lemma 6.6. Let pa and pb be two parameterized properties with
the possible parameter sets Ta and Tb . Let their conjunction property
pab be (pa ∧ pb ) with the possible parameter set Tab = Ta × Tb . It
holds that pab−E·IND ⇒ pa−E·IND.

Proof Sketch. According to Lemma 6.5 it is sufficient to show
that an efficient function ωab : S × Ta → Tab exists. This function
picks τb at random. If this leads to a pab

(τa,τb )
-satisfiable combination

for every matching s1 it holds that paτa (s0, s1). Otherwise p
ab−E·IND

is unachievable and thus pab−E·IND ⇒ pa−E·IND holds trivially.

6.3.3 Comparison including Conjuncted Properties. If pab is a

completely and efficiently satisfiable property, we can combine the

last lemmas and finally show in Appendix A.7:

Theorem 6.7. Let pa and pb be two parameterized properties
with the possible parameter sets Ta and Tb and the parameter tuples
τa ∈ Ta and τb ∈ Tb s.t. their conjunction property pab : (pa ∧ pb )
is a completely and efficiently satisfiable property with the possible
parameter set Tab = Ta × Tb and the parameter tuple (τa ,τb ) ∈ Tab .

It holds
pa−A·IND ⇒ pb−E·IND.

Proof Sketch. The previous lemmas show:

pa−A·IND
Sec. 6.3.1
⇒ pab−A·IND

Lem. 6.3
⇒ pab−E·IND

Lem. 6.6
⇒ pb−E·IND

Remark 9. If pab is completely and efficiently satisfiable, then pa

and pb are completely and efficiently satisfiable too.

6.3.4 A Different Dimension of Anonymity. The E·IND notions

yield a complete new dimension of game based privacy notions. The

differences cannot be compensated by just using other properties

in the A·IND game, but they are fundamental. To demonstrate this

we first define reasonable properties. A property is reasonable if the

A·IND adversary can attack at least one pair for different scenarios:

Definition 6.8. A property p is denoted reasonable iff

∃s0, s1 ∈ S : s0 , s1 ∧ p(s0, s1) = 1

We show in Appendix B that there is no reasonable property p

such that notion Sender1A−E·IND implies p−A·IND:

Theorem 6.9. Let p be any reasonable property. Sender1A−E·IND
does not imply p−A·IND:

Sender1A−E·IND��⇒ p−A·IND

7 DISCUSSION
In the following, we discuss modifications of our game that allow to

express requirements closely related to plausible deniability and to

relax the advantage definition in the game (Section 7.1). Moreover,

we discuss more fundamental changes to the game that additionally

allow to analyze adaptive and active adversaries (Section 7.2), as

well as the strength of our plausible deniability notion (Section 7.3)

7.1 Other Variants of Plausible Deniability
We can vary our plausible deniability definition to express related

protections. For instance, we can express other requirements for

the considered plausible alternative (Section 7.1.1). Also, by varying

the advantage requirement, we may allow for distinguishability of

a small number of cases (Section 7.1.2).

7.1.1 Changes in the Statement: Varying the Game. Our E·IND
definition guarantees that one or some other plausible users exist.
The accused user might though not know who the plausible alter-

native is. This is due to our advantage definition in the E·IND game.

By iterating over all valid challengers, we model an ∃ relationship.

However, in some cases a concrete alternative might be required.

Presenting a Concrete Alternative. With a slight modification, we

can model this extended goal: In addition to ACN Π, we associate
the function д : Θ × S × T → S for analysis. д must be efficient

and output the corresponding response of the challenger for every

protocol state θ , input scenario s0 and every tuple τ . The returned
scenario s1 must be indistinguishable to achieve this variant of
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E·IND. As д is efficient, the blamed user can present the concrete

alternative by executing д, given the user has enough information

on the protocol state.

Denying an Action without a Single Alternative. Our E·IND defi-

nition guarantees that a single, alternative user is also a plausible

initiator of the action. Another kind of deniability accepts that no

single user is as likely the originator as the suspect, as long as the

entirety of alternative users is plausible. To represent this variant in

our E·IND game, we allow the challenger to know the randomness

of the protocol state before deciding for an alternative scenario s1
(see Section 4.5, first case). So, the challenger is able to predict ev-

ery future random decision of the protocol and choose the optimal

alternative scenario accordingly. The randomness still cannot be

manipulated by the challenger.

7.1.2 Relaxing the Requirement: Varying the Advantage. Requir-
ing a non-negligible advantage of the attack is a strong guarantee,

as it allows the protection to fail only in negligibly many cases. We

stress however that the advantage definition of our game can easily

be adapted to express more relaxed requirements. As in earlier

work [15], we can, e.g., consider the case that the protection may

fail with small, but non-negligible probability by slightly increasing

the allowed advantage.

7.2 Adversary Models
In this Section, we discuss which adversary models require further

changes to our E·IND game.

Non-adaptive, passive Adversaries. Our formal definitions are

independent of the location of the adversary (local, global, links,

nodes etc.). The ACN model Π is capable of representing all non-

adaptive and passive adversaries. The only difference between them

is the amount of observations included in the transcript.

Adaptive Adversaries. Modeling adaptive adversaries requires a

more fundamental adaptation of the game. Kuhn et al. proposed the

Multi-Batch Extension for the A·IND game [15]. This means that

multiple scenarios can be executed consecutively in the ACN, with-

out resetting the protocol state in between. After each execution

the adversary gets the transcript and decides for the next scenarios

or to submit a guess.

Active Adversaries. To model an active adversary, i.e. one that

manipulates the ACN and does not follow the protocol, Kuhn et

al. suggest to use Protocol Queries [15]. With these queries the

adversary can modify the protocol state between adaptive scenarios.

For instance the adversary might add or remove nodes from the

network. However, the concrete set of queries and their effects

depend on the analyzed ACN and adversary model.

7.3 On the Strength of Plausible Deniability
We notice that our notion of plausible deniability for anonymous

communication is indeed designed to offer a weak privacy pro-

tection. If the adversary can get additional information that was

not considered during analysis, she might exclude the alternative.

Further, some adversaries might also conduct measures against

all potential culprits if there are only few. In these settings other

notions are preferable. However, being able to express and prove

even very weak protection allows us to investigate privacy and

performance trade-offs, as well as weak ACN protocols in depth.

8 CONCLUSION
The inevitable overhead required to achieve the ‘ ‘All INDistin-
guishability” (A·IND) notions renders them insufficient in particu-

lar scenarios. We demonstrated this with a bound in P2P networks

that is based on the well-known predecessor attack. Hence, we

designed the new ‘ ‘Exists INDistinguishability” (E·IND) game with

weaker guarantees, which enables privacy proofs with the advan-

tage of game-based definitions even for networks that come with

less overhead but weaker privacy requirements.

The use of indistinguishability games ensures easy integration

of different deniable actions and information. Moreover, it allow us

to compare the new notions to related work that already uses such

games [15], and to show that they also generalize to notions based

on function views [13], which originally have been proposed for

information hiding.

To the best of our knowledge, we are thereby the first to find a

bridge between the worlds of game and function view based defini-

tions and at the same time provide a general, formal game-based

definition for plausible deniability in anonymous communication.

With this, we bootstrap a discussion on the trade-offs between

A·IND and E·IND as well as other notions. Additionally, the versa-

tile ‘ ‘Exists INDistinguishability” notions open the door to various

improvements of anonymous communication, such that we can

analyze even weak privacy goals for (P2P) ACNs to uncover flaws,

improve on them, and finally provide provable privacy guarantees.
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A PROOFS
In the following we show the formal proofs for our claims in the

above work. We start with a basic proof on the ∼ relation (Appen-

dix A.1). Afterwards provide details on the comparison between

A·IND and E·IND (Appendix A.2 - A.7). In the end we will be able

to show

pa−A·IND⇒ pb−E·IND

For relevant subset of properties.

A.1 Relation ∼ is an Equivalence Relation
In order to use our game based definition of ∼ (Advs0,s1Π,A in neg-

ligible for every adversary) as the observational equivalence in

the function view approach we need to that it is an equivalence

relation:

Lemma A.1. The binary relation ∼ is an equivalence relation.

Proof. We show that ∼ is symmetric, transitive and reflexive:

∼ is symmetric: b is chosen uniformly at random it does not

matter if s0 or s1 is the first scenario.
∼ is transitive: The probability distribution on the transcripts of

s0 and s1 only differs by an negligible amount and if the same holds

for s1 and s2, the probability distribution of transcripts between

s0 and s2 can only differ twice negligible. Twice negligible is still

negligible.

∼ is reflexive: The ACN Π is getting the exact same input in

both cases. Even if Π is probabilistic, the probability distributions

of the possible transcripts is equivalent for both scenarios.

□

A.2 p−A·IND⇒ p−E·IND
We start the comparison of A·IND and E·IND by showing which

one is stronger for a fixed property p.

Lemma A.2. For every completely and efficiently satisfiable prop-
erty p with the possible parameter set T and the parameter tuple
τ ∈ T it holds that: p−A·IND ⇒ p−E·IND.

Proof. Suppose a successful adversary on p−E·IND, is given as

Ap−E·IND. We reduce this adversary into a successful adversary

A
p−A·IND

Ap−E·IND
on the p−A·IND notion, as shown in Algorithm 3.

Algorithm 3 Ap−A·IND
Ap−E·IND

1 Method : g e t P a i r

2 Θ′ ←Arguments

3 (s0,τ , stateA ) ← A
pτ−E·IND(1k , g e t S c e n a r i o ,Θ′)

4 s1 ← γ (s0,τ )

5 return (s0, s1,τ , (stateA , s1))
6

7 Method : a t t a c k

8 (transcript , (stateA , s1)) ← Arguments

9 b ′ ← Ap−E·IND(1k , a t t a c k , s1, transcript , stateA )

10 return b ′

Valid adversary on p−A·IND: As p is an completely and effi-
ciently satisfiable property, {s | s ∈ S : s0 pτ s} is not empty for any

s0 ∈ S and a matching s1 ∈ { | s ∈ S : pτ (s0, s)} can be always be

found efficiently.
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Valid challenger on p−E·IND: As s1 ∈ {s | s ∈ S : pτ (s0, s)}
and transcript is either of Π(s0) or Π(s1), the algorithm is a valid
challenger for p−E·IND.

Advantage: Ap−E·IND has an advantage higher then negli-

gible against every valid challenger and therefore also against

A
p−A·IND

Ap−E·IND
. Thus, A

p−A·IND

Ap−E·IND
is successful with more than

negligible probability.

This proof is visualized in Fig. 5.

Cp−A·IND A
p−A·IND

Ap−E·IND
Ap−E·IND

θ
D

←− Θ
θ perspA (θ )

perspA (θ )

(s0,τ )

s1 ← γ (s0,τ )(s0, s1,τ )

b
$

←− {0, 1}

r
$

←− {0, 1}∗

transcript ← Π(θ , sb , r )
transcript

(s1, transcript)

b′

b′

Figure 5: p−A·IND ⇒ p−E·IND

□

A.3 pb−A·IND⇒ pa−A·IND
In Remark 1we have already outlined thatpb−A·IND⇒ pa−A·IND

holds if pa ⇒ pb . For parameterized properties we need a way to

transform the parameters for pa into parameters for pb . In the

following lemma we therefore require an efficient parameter trans-

formation function ωb that outputs the parameters τb .

Lemma A.3. Let pa and pb be two parameterized properties with
the possible parameter sets Ta and Tb and the parameter tuples τa and
τb . If an efficient parameter transformation functionωb : S×S×Ta →
Tb exist s.t.

∀τa ∈ T0.∀s0, s1 ∈ S : paτa (s0, s1) ⇒ pbωb (s0,s1,τa )
(s0, s1)

(2)

then pb−A·IND ⇒ pa−A·IND.

Proof. Suppose a successfulpa−A·IND-adversary is given, then

we can reduce her into an adversary on pb−A·IND as shown in

Algorithm 4. This proof is visualized in Fig. 6.

Valid adversary onpb−A·IND:Ap
a−A·IND

outputs a holding

combination (s0, s1,τa ) s.t. p
a
τa (s0, s1). According to Eq. (2) then

pbτb (s0, s1), where τb = ωb (s0, s1,τa ), holds too.
Valid challenger on pa−A·IND: transcript is either Π(s0) or

Π(s1) and p
a
τa (s0, s1) holds because s0, s1 and τa are initially chosen

by Ap
a−A·IND

. Consequently the Algorithm 4 is a valid chal-

lenger.

Algorithm 4 Ap
b−A·IND

Ap
a−A·IND

1 Method : g e t P a i r

2 Θ′ ←Arguments

3 (s0, s1,τa , stateA ) ← A
pa−A·IND(1k , g e t P a i r ,Θ′)

4 τb ← ωb (s0, s1,τa )

5 return (s0, s1,τb , stateA )
6

7 Method : a t t a c k

8 (transcript , stateA ) ← Arguments

9 b ′ ← Ap
a−A·IND(1k , a t t a c k , transcript , stateA )

10 return b ′

Cp
b−A·IND A

pb−A·IND

Ap
a−A·IND Ap

a−A·IND

θ
D

←− Θ
θ perspA (θ )

perspA (θ )

(s0, s1,τa) s.t. p
a
τa (s0, s1

)

τb ← ωb (s0, s1,τa ) s.t. p
b
τb (s0, s1)(s0, s1,τb )

b
$

←− {0, 1}

r
$

←− {0, 1}∗

transcript ← Π(θ , sb , r )
transcript

transcript

b′

b′

Figure 6: pb−A·IND ⇒ pa−A·IND

Advantage: For every successful attack of the pa−A·IND ad-

versary, the pb−A·IND adversary is also successful. We assumed

that the pa−A·IND adversary has more than negligible advantage.

Hence the pb−A·IND adversary has a advantage, bigger than negli-

gible too. □

A.4 pa−E·IND⇒ pb−E·IND
For E·IND the direction of the implication is flipped. Still we need

to transform the parameters. This time we require an efficient

parameter transformation function ωa to output parameters for pa .
The signature is different to theωb function, shown in Appendix A.3

as we are in the E·IND game now.

Lemma A.4. Let pa and pb be two parameterized properties with
the parameter sets Ta and Tb and the parameter tuples τa ∈ Ta and
τb ∈ Tb . If an efficient function ωa : S × Tb → Ta exists s.t.

∀τb ∈ Tb .∀s0, s1 ∈ S : pbτb (s0, s0) ∨(
paωa (s0,τb )

(s0, s1) ⇒ pbτb (s0, s1)
)

(3)

then pa−E·IND ⇒ pb−E·IND
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Proof. We show that a successful adversary on pb−E·IND does

imply a successful adversary on pa−E·IND. Algorithm 5 describes

this reduced adversary A
pa−E·IND

Ap
b−E·IND

formally.

Algorithm 5 Ap
a−E·IND

Ap
b−E·IND

1 Method : g e t S c e n a r i o

2 Θ′ ←Arguments

3 (s0,τb , stateA ) ← A
pb−E·IND(1k , g e t S c e n a r i o ,Θ′)

4 i f (pbτb (s0, s0)) :
5 / / s e l f s a t i s f i a b l e c o m b i n a t i o n

6 s ′
0

$

←− S

7 τa
$

←− τa
8 return (s ′

0
,τa , (stateA , s

′
0
, 1,θ ′))

9 e l s e :

10 τa ← ωa (s0,τb )

11 return (s0,τa , (stateA , s0, 0,θ ′)
12

13 Method : a t t a c k

14 (s1, transcript , (stateA , s0,wasSel f satis .,Θ
′)) ← Args

15 i f wasSel f satis f iable :

16 / / s i m u l a t i n g a v a l i d c h a l l e n g e r

17 θ ′′
$

←− θ ′

18 r
$

←− {0, 1}∗

19 transcript ← Π(θ ′′, s0, r )

20 Ap
b−E·IND(1k , a t t a c k , s0, transcript , stateA )

21 / / and g u e s s i n g a t r andom

22 return b ′
$

←− {0, 1}

23 e l s e :

24 b ′ ← Ap
b−E·IND(1k , a t t a c k , s1, transcript , stateA )

25 return b ′

For this proof we run a proof by cases. The cases are

(1) s0 is not p
b
τb -satisfiable

(2) pbτb (s0, s0) holds

(3) ¬pbτb (s0, s0) and s0 is p
b
τb -satisfiable and p

a
ωa (s0,τb )

-satisfiable

(4) ¬pbτb (s0, s0) and s0 is pbτb -satisfiable but is not paωa (s0,τb )
-

satisfiable

Case s0 is not pbτb -satisfiable: In this case pb−E·IND is un-
achievable. Due to Eq. (3) s0 is notpaωa (s0,τb )

-satisfiable. Thus,pa−E·IND

is unachievable too. In this case pa−E·IND ⇒ pb−E·IND holds

trivial.

Case pbτb (s0, s0) holds: If s0 is pbτb -satisfiable with itself (self-

satisfiable) the challenger returning s1 := s0 is valid and the advan-

tage of Ap
b−E·IND

is 0 for this round. Algorithm 5 chooses a ran-

dom attack combination (s ′
0
,τa ) and guesses b ′ at random for this

round. Thus, she has at least the same advantage as Ap
b−E·IND

for this round
6
. As θ ′′ is picked form all the possible protocol states

and and as Ap
b−E·IND

has the same perspectiveon the protocol

state, she cannot detect that she is communicating with a simu-

lated challenger. If pbτb (s0, s0) holds for every combination (s0,τb ),

then the property pb is reflexive. Thus, pb−E·IND is achieved in

general and the implication pa−E·IND ⇒ pb−E·IND holds trivial.

Otherwise, if pb is not reflexive, every successfulAp
b−E·IND

must

choose another attack combination at some point in polynomial

time, for which ¬pbτb (s0, s0) holds.

Case ¬pbτb (s0, s0) and s0 is pbτb and paωa (s0,τb )
-satisfiable: In

Eq. (3) we assumed that a function ωa exists, that transforms a

parameter tuple τb of pb into a parameter tuple τ0 ← ωa (s0,τb )

for pa s.t. paτ0 (s0, s1) ⇒ pbτb (s0, s1). Due to Eq. (3), the pa−E·IND

challenger, who chooses a s1 s.t. s0 paτ0 s1, is also valid for pbτb .
The transcript is either Π(s0) or Π(s1). Thus, the Algorithm 5 is

successful for every successful attack of Ap
b−E·IND

. We assumed

thatAp
b−E·IND

is successful withmore than negligible probability.

Algorithm 5 has the same advantage and thus the reduction holds.

Case¬pbτb (s0, s0) and s0 isp
b
τb -satisfiable and is notp

a
ωa (s0,τb )

-
satisfiable: In this case we found an unsatisfiable combination for

pa and pa−E·IND is therefore unachievable. In this case

pa−E·IND ⇒ pb−E·IND

holds trivial.

□

A.5 pa−A·IND⇒ pab−A·IND
In preparation for Theorem A.7 we discuss conjuncted properties.

In order to make the natural implication pa−A·IND⇒ pab−A·IND
work for parameterized properties we need to give an efficient

parameter transformation, that outputs τa given τab . It is clear that
this transformation is rather simple:Âť

Lemma A.5. Let pa and pb be two parameterized properties with
the possible parameter sets Ta and Tb and the parameter tuples τa ∈
Ta and τb ∈ Tb . Let their conjunction property pab be pa ∧ pb with
the possible parameter set Tab = Ta × Tb and the parameter tuple
(τa ,τb ). It holds that

pa−A·IND ⇒ pab−A·IND

Proof. According to Lemma A.3 it is sufficient to show that an

efficient function ωa : S × S × Tab → Ta exists s.t.

∀(τa ,τb ) ∈ Tab .∀s0, s1 ∈ S :

pab
(τa,τb )

(s0, s1) ⇒ paωa (s0,s1,(τa,τb ))
(s0, s1)

ωa is given by

ωa : (s0, s1, (τa ,τb )) 7→ (τa )

□

6
Her advantage is higher, if she picks a combination s ′

0
, τ0 s.t. s ′

0
is not paτ

0

-

satisfiable. In this case pa−E·IND is unachievable and pa−E·IND ⇒ pb−E·IND
holds trivial
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Remark 10. Please note the naming ωa and its signature is incon-
sistent with Lemma A.3 and actually resembles ωb from Lemma A.4.
This is due to the fact that the indices are named to match the con-
juncted properties. ωa still means it produces parameters for pa .

A.6 pab−E·IND⇒ pa−E·IND
For E·IND the direction is flipped. We hence need a parameter

transformation from τa to τab . We can generate the τb part of the

parameter at random:

Lemma A.6. Let pa and pb be two parameterized properties with
the possible parameter sets Ta and Tb . Let their conjunction property
pab be (pa ∧ pb ) with the possible parameter set Tab = Ta × Tb . It
holds that pab−E·IND ⇒ pa−E·IND.

Proof. According to Lemma A.4 it is sufficient to show that an

efficient function ωab : S × Ta → Tab exists s.t.

∀τa ∈ Ta .∀s0, s1 ∈ S : paτa (s0, s0) ∨(
pabωab (s0,τa )

(s0, s1) ⇒ paτa (s0, s1)
)

ωab is given by ωab : (s0,τa ) 7→ (τa ,τb
$

←− Tb ). τb is picked at

random, we hence distinguish between the two cases:

• τb is s.t. pab
(τa,τb )

(s0, ·) is satisfiable

• τb is s.t. pab
(τa,τb )

(s0, ·) is not satisfiable

Case pab
(τa,τb )

(s0, ·) is satisfiable: For every matching s1 also

paτa (s0, s1) holds. The p
a
τa−E·IND adversary has more than negli-

gible advantage for every such pair. Hence, the pab
(τa,τb )

−E·IND

adversary has more than negligible advantage too.

Case pab
(τa,τb )

(s0, ·) is not satisfiable: The notion pab−E·IND is

unachievable and thus pab−E·IND ⇒ pa−E·IND holds trivial. □

A.7 pa−A·IND⇒ pb−E·IND
Finally we can show pa−A·IND⇒ pb−E·IND for a relevant subset

of properties:

Theorem A.7. Let pa and pb be two parameterized properties
with the possible parameter sets Ta and Tb and the parameter tuples
τa ∈ Ta and τb ∈ Tb s.t. their conjunction property pab : (pa ∧ pb )
is a completely and efficiently satisfiable property with the possible
parameter set Tab = Ta × Tb and the parameter tuple (τa ,τb ) ∈ Tab .

If pab is completely and efficiently satisfiable then pa−A·IND ⇒
pb−E·IND.

Proof. We prove this in three steps.

pa−A·IND
Step 1

⇒ pab−A·IND
Step 2

⇒ pab−E·IND
Step 3

⇒ pb−E·IND

Step 1: Follows directly from Lemma A.5.

Step 2: Follows directly from Lemma A.2. For every completely
and efficiently satisfiable property pab Step 2 holds.

Step 3: Follows directly from pab ⇒ pa and Lemma A.4 □

B E·IND IS A DIFFERENT DIMENSION OF
ANONYMITY

We demonstrate based on the example Sender1A−E·IND that E·IND

and A·IND are indeed two different dimensions of anonymity.

B.1 Example: Sender1A−E·IND
No reasonable A·IND notion is weaker than Sender1A−E·IND. As

a reasonable A·IND notion we understand a notion in which the

adversary is allowed to attack at least one pair of differing scenarios.

We describe an Sender1A−E·IND system by two equivalence classes

eqcls0 and eqcls1 of scenarios. eqcls0 contains a very simple set of

scenarios, s.t. this class achieves Sender1A−E·IND, while eqcls1 con-

tains the remaining scenarios and is also Sender1A−E·IND. Next,

we show that this whole system is still Sender1A−E·IND, if we

move any arbitrary scenario from eqcls1 to eqcls0 and vice versa.

We hence, show that we can separate every arbitrary pair of sce-

narios and still be Sender1A−E·IND. As we assume that at least

one comparable pair of differing scenario exists for any reason-

able p−A·IND notion, we can separate exactly this pair. Hence, the

p−A·IND adversary is successful.

Theorem B.1. Letp be any reasonable property. Sender1A−E·IND
does not imply p−A·IND:

Sender1A−E·IND��⇒ p−A·IND

Proof. This lemma is equivalent to:

∀ reas. p. : Sender1A−E·IND��⇒ p−A·IND
⇐⇒

∀ reas. p.∃sys ∈ Sys : sys is Sender1A−E·IND∧
sys is not p−A·IND

For every such p, there exists at least one p-comparable pair

s0, s1 ∈ S with s0 , s1. We provide a Sender1A−E·IND system

for every possible case of s0, s1. Note that φ represents the empty

scenario with no real communication. As mentioned in Remark 6

we can give a system by its ∼ equivalence classes. We make use of

this fact for this proof.

Case (1) s0 , φ ∧ s1 , φ: We describe the counterexample system

by two equivalence classes eqcls0 and eqcls1 as follows:

eqcls0 := {φ, s0}
eqcls1 := S \ eqcls0

Sender1A−E·IND: If the Sender1A−E·IND adversary attacks eqcls1,
the challenger returns an indistinguishable scenario from eqcls1
where a is not active. The existence of such a scenario is trivial.

Otherwise, if the Sender1A−E·IND adversary attacks eqcls0, the
challenger returns the indistinguishable φ scenario.

Not p−A·IND: p(s0, s1) holds and s0, s1 are in different equiva-

lence classes, and thus p−A·IND is broken.

Case (2) s0 = φ ∧ s1 , φ or s0 , φ ∧ s1 = φ: The counterexample

system consists of two equivalence classes again:

eqcls0 := {φ}
eqcls1 := S \ {φ}

Sender1A−E·IND: Same argumentation as in case (1).

Not p−A·IND: Same argumentation as in case (1).

In this system the adversary can decide if any real communi-

cation takes place or not. This proof does also hold for more p-
comparable pairs, because one p-comparable and distinguishable

pair is enough to break the A·IND notion. □
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We can not find anyA·INDnotion equivalent to Sender1A−E·IND.

In every reasonable notion at least one pair of differing scenarios

is comparable i.e., s0 , s1 and p(s0, s1). If such a pair exists, the

A·IND notion is not achieved in general. The concept of this proof

is equivalent for lot of E·IND notions we observed. E·IND is there-

fore a completely different dimension of anonymity and cannot be

represented in the proposed A·IND game of Kuhn et al.[15].

B.2 The other way around
On the other handwe show that Sender Unobservability (SO−A·IND)
is stronger than Sender1A−E·IND. According to Theorem 6.7 it is

sufficient to show that their conjunction property ES ∧ Sender1A
is a completely and efficiently satisfiable property. To show this,

we describe the construction γ function: Given a input scenario

s0 ∈ S and the parameter a ∈ A for the Sender1A property we

can easily construct a satisfying s1 by choosing a random agent

a∗
$

←− A \ {a} and replacing every occurrence of sender a by a∗.
This yields the new scenario s1 in which a is not longer active. It

holds that ES (s0, s1)∧Sender1A(s0, s1). Note that this also holds for
s0 = φ, the scenario with no communication.
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