
INFAS: In-Network Flow mAnagement Scheme for
SDN Control Plane Protection

Tao Li1, Hani Salah1, Xin Ding1, Thorsten Strufe1, Frank H. P. Fitzek1, and Silvia Santini2

1Technical University of Dresden, Germany
2Universitá della Svizzera Italiana (USI), Switzerland

{tao.li, hani.salah, xin.ding, thorsten.strufe, frank.fitzek}@tu-dresden.de, silvia.santini@usi.ch

Abstract—The work that we present in this paper is motivated
by a systematic vulnerability of SDN, a current technology that
is expected to dominate the Internet. In particular, we focus on
the Control Plane Saturation (CPS) attack, a very harmful, yet
easy to implement, DoS attack. In CPS, the adversary generates
a massive amount of flow packets that will not match switches’
flow rules. As a result, the switches flood the control channels and
the controller with malicious control packets. Previously proposed
solutions mainly rely on the controller-side detection and filtering,
thus still consume the control plane bandwidth resources and
cannot achieve quick response due to the switch-controller delay.

We present INFAS, a system that runs on commodity servers
installed near network devices, for protecting SDN against CPS.
The switches send flow packets that do not match concrete flow
rules in their flow tables to INFAS, which is tasked to analyze
the packets and to subsequently decide on sending them back
to the switches or not. This results in reducing the number
of generated control packets by up to 80%, which we show
through extensive evaluations.

Index Terms—Software-Defined Networking; Security; Control
Plane Saturation; Denial-of-Service; Flow Management

I. INTRODUCTION

Traditional IP networks, being based on distributed proto-
cols running inside network devices, are complex and hard
to manage. In particular, administrators of these networks
convey network-wide policies by configuring each network
device individually using vendor-specified commands. They
also need to reconfigure the devices in case of faults and
changes. Furthermore, each device in the network is tasked
both (i) to take switching (or routing)1 decisions in the control
plane and (ii) to forward incoming traffic accordingly in the
data plane. Such coupling between the control plane and the
data plane inside the network devices reduces flexibility, and
it handicaps large-scale deployments and evaluations of new
network protocols and architectures.

Software Defined Networking (SDN) has been gaining
popularity over the past few years, and it is widely considered
today as a key player in modern and future networking. SDN
promises to address the aforementioned limitations of tradi-
tional IP networks by decoupling the control plane from the
data plane. In particular, the switches in SDN become dummy

1 From now onward, the term switch will represent both types of devices.

devices being responsible only for forwarding traffic according
to the decisions taken by a (logically) centralized network
controller. Such a design simplifies network management, and
it also facilitates innovation and evolution [1].

While SDN benefits can be mainly attributed to the data-
control planes separation, the same feature can represent a
systematic vulnerability [2]. A very harmful, yet easy to
implement, Denial-of-Service (DoS) attack that misuses such
a separation is the Control Plane Saturation (CPS) attack. In
CPS, the adversary exploits the fact that SDN switches send
control packets to the controller whenever their flow tables
miss rules matching incoming flow packets. In particular, the
adversary generates a large number of such packets rapidly.
This will trigger the switches to flood both the controller and
the control channels with malicious control packets. The mali-
cious control packets will consume the computation resources
of the controller as well as the control plane bandwidth. As
a consequence, the communication between the switches and
the controller will be disrupted, and the legitimate flow packets
will not be (timely) handled.

There has been a considerable amount of research on CPS
and similar attacks. The proposed solutions are commonly
implemented as protection modules at the controller side (e.g.
see [3]–[5] and the references therein). The protection module
receives incoming control packets, before other controller
modules, and analyzes them to identify potential adversaries
(those generating flow packets incurring large amounts of
control packets). Once potential adversaries are identified,
the protection module carries out some mitigation actions
(e.g. installing flow rules in the switches to block traffic
coming from the identified hosts [4]). While these solutions
are effective in protecting the computational resources of the
controller, they do not alleviate the bandwidth saturation in
the control plane. This is because all the control packets still
have to be sent from the switches to the controller till they are
handled by the protection module.

Our main contribution in this paper is In-Network Flow
mAnagement Scheme (INFAS), an efficient solution for
protecting SDN networks against CPS. INFAS addresses
the aforementioned drawbacks of prior solutions by a self-
contained in-network module to handle the malicious data
flows from a source, before they saturate the control plane.
INFAS is designed as a network function running on com-978-3-903176-15-7 c© 2019 IFIP

367
Authorized licensed use limited to: KIT Library. Downloaded on October 08,2023 at 13:22:38 UTC from IEEE Xplore. Restrictions apply.

modity servers installed near the switches. Such in-network re-
sources are already available in the current, rapidly increasing,
networks that support Network Functionality Virtualization
(NFV). The switches send flow packets that do not match
any rule in their flow tables firstly to INFAS for evaluation.
INFAS, in turn, employs a novel threshold-based algorithm to
determine the probability of allowing the received flow packets
to return to the switches and trigger the corresponding control
packets. To reduce the delay caused by this additional process-
ing step, we build INFAS using the Data Plane Development
Kit (DPDK) [6].

We evaluate the effectiveness of INFAS extensively through
representative prototype and network emulations. The results
show the high effectiveness of INFAS. In particular, INFAS
reduces the generation of malicious control packets by up
to 80%, depending on the parameters configuration of our
algorithm. In addition, compared to the approach of directly
handling control packets, the switch throughput is improved
with INFAS by about 26%.

The remainder of the paper is structured as follows: we
give an overview of the CPS attacks and defence mechanisms
on the SDN in Section II. Next, we describe INFAS and
evaluate it in Section III and Section IV, respectively. Lastly,
we conclude the paper in Section V.

II. BACKGROUND AND RELATED WORK

In SDN, Denial-of-Service (DoS) attacks to the control
plane mainly target the controller and control channels. In
this paper, we deal with a specific DoS attack called Control
Plane Saturation (CPS). The basic principle of CPS is to
generate a large number of flow packets that will not match
any flow rule in the flow tables of the receiving switches.
As a consequence, each unmatched flow packet results in two
control packets: (i) packet_in message sent from the switch
to the controller and (ii) ofp_flow_mod or packet_out
messages sent in the opposite direction. Floods of these
control packets, in turn, result in consuming the computational
resources of the controller [4] as well as the control plane
bandwidth. Subsequently, the legitimate flow packets will be
either dropped or delayed [7].

The majority of the CPS defense mechanisms are controller-
based, which consists of a mitigation module implemented as
a controller application. For example, FloodDefender [3] is
a network control framework for protecting the resources in
the data and control planes. It implements a packet filtering
module in the controller to identify the malicious flows based
on the arrival rates of packet_in messages. SDN-Guard
[8] is a controller application designed to mitigate CPS-
like attacks. It manages the flow packets according to the
information it receives from an intrusion detection system.
These information includes the threat probability of each
flow. SDN-Guard reroutes potentially malicious flow packets
through the least utilized links. The mitigation module of
FlowRanger [9] uses a trust management system to prioritize
the incoming packet_in messages, and stores them in a
queue. The higher the priority of the message, the faster it

will delivered to other controller modules, such as the routing
module.

The aforementioned controller-based solutions do not al-
leviate the bandwidth consumption caused by the exchanged
control packets. That is, the control requests (i.e. packet_in
messages) will be sent from the switches to the controller, and
their responses will be sent oppositely, until the protection
module deals with them. Some prior works also implement
the in-network approach, to some extent. For instance, Flood-
Guard [10] employs symbolic executions to pre-generate flow
rules to increase the responsiveness of the controller. It further
uses in-network packet queues to cache all unmatched flow
packets. FloodGuard translates the cached flow packets into
control packets in a round-robin way based on protocol types,
and sends them to a migration agent running inside the
controller. AVANT-GUARD [11] aims to prevent TCP-based
DoS attacks, using additional modules introduced into the
design of the switch architecture. Its principle idea is to allow
only the flow packets arriving from a source that can complete
a TCP handshake to trigger packet_in messages.

The above discussed in-network solutions either still imple-
ment the mitigation logic in the controller (like [10], [12]),
or are hard to implement (like [11] which requires to change
the switch architecture). In contrast, INFAS implements the
mitigation logic directly and locally in the in-network module,
to reduce the control plane traffic under DoS. In addition, it
is easy to implement, does not require to change the switch
architecture, and can be easily integrated into NFV platforms.

III. OUR SOLUTION:INFAS

In this section, we describe INFAS, our solution for pro-
tecting SDN against the CPS and similar DoS attacks.

A. Architecture design

Fig. 1 depicts a SDN network deployed with INFAS. For
each switch, we deploy an INFAS instance on a connected
server. In this paper, we do not consider cooperation, thus there
is no communication, among INFAS instances. Each INFAS
instance consists of three components: (i) flow management
module, (ii) query module, and (iii) switch statistic proxy. In
the following, we describe each of these components, and how
they interact with each other.

The flow management module accepts the flow packets
that do not hit any flow rule. It includes an attack detection
and mitigation algorithm performing analysis over statistics,
collected from both unmatched flow packets and the query
module. It determines the severity of control plane saturation
caused by the packets from a flow source. Accordingly, the
flow management module tunes action parameters for each
suspicious entity, e.g. host or port, to drop portions of the
corresponding unmatched flow packets. Other unmatched flow
packets are considered legitimate, and they are sent back to
the switch via another port and will trigger packet_in
messages.

The query module is responsible for collecting the informa-
tion that cannot be directly derived by the flow management

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference368
Authorized licensed use limited to: KIT Library. Downloaded on October 08,2023 at 13:22:38 UTC from IEEE Xplore. Restrictions apply.

h2

Controller

s1

Switch
statistic
proxy

h3Flow
management

module
Query
module

h1

Fig. 1: System architecture of INFAS and testbed setup

module. These information include basic flows statistics, such
as flow packet counters. The query module requests them,
at regular time intervals, from the switch statistic proxy.
Once the information is collected, the query module sends
them to the flow management module. The flow management
module is separated from the query module. That is, they work
asynchronously, because the former is tasked to perform in-
network packet processing at a high speed, while the latter
involves slow I/O operations, like socket communication.

The switch statistic proxy is a small piece of code that runs
in the switch to bridge its associated switch with the two other
INFAS components. As described above, the switch statistic
proxy receives inquiries from the query module asking for
some statistics. To answer these inquiries, the switch statistic
proxy runs basic switch commands, aggregates the returned
results, and lastly sends the outputs back to the query module.

B. Flow rule design

To support the detection and mitigation algorithm, INFAS
defines three categories of flow rules: (i) concrete flow rule,
(ii) redirection flow rule, and (iii) monitoring flow rule. We
illustrate the roles of these categories through an example.
In the example, there is a switch s1 with four ports: port
0 is an egress port used to send flow packets to the flow
management module, port 1 is an ingress port used to
receive data from the same module, port 2 is connecting
s1 with a host h1 holding the IP address 10.0.0.1, and port
3 which we mention through the example. Table I shows four
exemplary flow rules following INFAS design.

The concrete flow rules perform exact matching for the
packet flows, to achieve the actual goal of some network
control logic (e.g. routing). The controller is responsible for
installing these rules in the switches’ flow tables. In the
example, rule 1 is a concrete flow rule that specifies the
output port 3 for the flow packets having the source IP
address 10.0.0.1 and the destination IP address 10.0.0.2. From
now onward, we will use the terms matched packets and
unmatched packets to respectively refer to the flow packets
that match and those that do not match concrete flow rules.

The purpose of the redirection flow rules is to avoid sending
packet_in messages from the switches to the controller in

the case of unmatched packets. In the current INFAS design,
unmatched packets are simply forwarded to the flow manage-
ment module. Rule 2 is an exemplary redirection flow rule
that specifies the output port 0 for the unmatched packets
that arrive through port 2 and are destined to 10.0.0.2. Note
that it is possible to select a portion of unmatched packets
using more specific matching fields, depending on the concrete
flow rules. Redirection flow rules always have lower priority
than concrete flow rules, which assures that flow packets first
obey the network control logic.

The monitoring flow rules are intended to help to obtain
basic statistics, like the number of matched packets received
from a host or through a port. These rules are usually in-
stalled in the flow table (e.g. flow table 1) following the one
containing concrete flow rules and redirection flow rules (e.g.
flow table 0). In the example, rule 3 is a monitoring flow
rule that counts the total number of matched packets coming
from h1, since all packets matching rule 1 are forced to go
through the flow rule table 1.

In the example, rule 4 is the default flow rule. A flow
packet that is permitted by INFAS to return to the switch
will not match any flow rule belonging to the above three
categories. With the default flow rule, it ultimately will incur
a real table-miss event.

C. Flow management algorithm

The majority of DoS mitigation algorithms in SDN, which
we are aware of, tend to clearly distinguish between mali-
cious flows and legitimate flows. They subsequently block
the sources of potentially malicious flows. A widely used
approach is to use the amount of triggered control packets as
a detection parameter. However, we argue that this approach
can be inaccurate. This is because a large number of control
packets can be attributed to legitimate flow packets originating
from a source during a workload peak. Instead, we propose
a threshold-based flow management algorithm that does not
block a network entity completely.

Start

noyes > CΔu

Gather data

yes nor < αr yes nor < αr

Overload
scenario

Attack
scenario

Normal
scenario

Suspicious
scenario

End

Tune action
parameter

C

αr

Δu

r

Fig. 2: INFAS flow management algorithem

As shown in Fig. 2, the algorithm identifies four different
control plane’s saturation severity levels. Accordingly, the al-

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 369
Authorized licensed use limited to: KIT Library. Downloaded on October 08,2023 at 13:22:38 UTC from IEEE Xplore. Restrictions apply.

Flow rule Category Table ID Source IP Destination IP Priority In port Action
Rule 1 Concrete 0 10.0.0.1 10.0.0.2 2 2 (h1 – s1) Output: 3 & GOTO Table 1
Rule 2 Redirection 0 * * 1 2 (h1 – s1) Output: 0
Rule 3 Monitoring 1 10.0.0.1 * 1 2 (h1 – s1) None
Rule 4 Implicit * * * 1 * Controller

TABLE I: Exemplary INFAS flow rules

gorithm applies distinct mitigation strategies on incoming un-
matched packets. The algorithm executes in a periodic manner,
and it uses two input thresholds: (i) the packet_in budget
C and (ii) the threshold of unmatched packets proportion αr.
The first threshold defines, within a time slot, the maximum
number of flow packets permitted to trigger packet_in
messages. It highly depends on the capacity of the controller
and the expected number of networking entities sending packet
flows. A simple method to determine the budget value is to
divide the controller capacity among the network entities. The
second threshold specifies the maximum allowed percentage
of unmatched flow packets received from a host or port. To
measure the unmatched packet proportion, the algorithm uses
the unmatched and matched packet statistics, ∆u and ∆m,
respectively collected from the flow management module and
the query module. The unmatched packet proportion for a
network entity is: r = ∆u/(∆u + ∆m).

The algorithm uses the above-described input values to
calculate the acceptance probability p, i.e. the probability to
return an unmatched packet to the switch. In principle, the
more severe the saturation caused by a network entity, the
smaller the acceptance probability p for the corresponding flow
packets. In the following, we describe the four severity levels,
and the corresponding categorization conditions and p values:

• Normal case (∆u < C, r < αr): Here, the amount of
unmatched packets is less than the packet_in budget,
and the most of flow packets received from a network
entity can hit the concrete flow rules. The algorithm
allows all unmatched packets to return to the switch and
trigger table-miss events. The acceptance probability p in
this case is set to 1.

• Suspicious case (∆u < C, r > αr): We consider this
case as suspicious because these packets do not bring
much workload to the control plane, although a relatively
large portion of flow packets received from the network
entity trigger table-miss events. In this case, the algorithm
introduces a small penalty, according to which only a
small portion of the unmatched packets are dropped: p =
1− tanh(r ∗ 2). tanh is a hyperbolic tangent function.

• Overload case (∆u > C, r < αr): Under these
conditions, the control plane is considered overloaded,
because the number of unmatched packets exceeds the
packet_in budget. Meanwhile, the majority of the flow
packets can match the concrete flow rules. This can be
interpreted as a workload peak. In this case, the algorithm
simply regulates the rate of unmatched packets to be the
same as the budget value: p = ∆u/C.

• Attack case (∆u > C, r > αr): This is the most severe

case. More precisely, the amount of unmatched packets
exceeds the packet_in budget, and the network entity
sends a large amount of flow packets that will trigger
packet_in messages. This case is very likely caused by
an attack. To mitigate the aggressive impact of the attack
on the control plane, the algorithm dramatically decreases
the acceptance probability: p = ∆u/C∗(1−tanh(r∗10)).

IV. IMPLEMENTATION AND EVALUATION

In this section, we detail our implementation and evaluation.

A. Prototype implementation

We implement the flow management module as a Data Plane
Development Kit (DPDK) application. This implementation
choice provides the required performance guarantees for fast
in-network packet processing [13]. It also enables to integrate
INFAS into other DPDK-based NFV platforms, like open-
NetVM [14], [15]. The query module is also implemented
as a DPDK application. It exchanges information with the
flow management module through a high-speed ring buffer
provided by DPDK. It also communicates with the switch
statistic proxy using standard TCP/IP sockets. Both the flow
management module and the query module run on a Netgate
DPDK box [16], containing a Quad Core Intel(R) Atom(TM)
E3845 1.91 GHz CPU and 2GB RAM. We use one Open
vSwtich (OvS) instance [17] as the SDN switch in the experi-
ment. As for the switch statistic proxy, it is implemented as a
Python script running on the same host as the OvS. To query
the flow statstics, the switch statistic proxy interacts with the
OvS using OvS-Python APIs [18].

B. Evaluation setup

1) Testbed scenario: Our evaluations are based on a testbed
emulating the functionality of a SDN-based server workload
balancer. As illustrated in Fig. 1, the testbed consists of
a Floodlight [19] controller, an OvS s1 protected by an
INFAS instance, and three hosts {h1, h2, h3} running as
Docker containers [20]. The host h1 has the IP address
192.168.0.1, which represents an external entity. The hosts
h2 and h3 are internal servers assigned the IP addresses
10.0.0.2 and 10.0.0.3, respectively. To expose the service to
the outside world, h2 and h3 also share an external IP address
192.168.0.20. The OvS and the three containers run on a
machine equipped with a four-core Intel(R) Core(TM) i5-6500
CPU and 32GB RAM.

In the experiments, h1 sends packet flows, from its socket
ports, to different ports belonging to 192.168.0.20. The role of
s1 is to evenly distribute the flow packets from h1 to the two
servers {h2, h3}, by mapping their IP addresses and ports.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference370
Authorized licensed use limited to: KIT Library. Downloaded on October 08,2023 at 13:22:38 UTC from IEEE Xplore. Restrictions apply.

300 350 400 450 500 550 600
Packet_in message budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Un
m

at
ch

ed
 p

ac
ke

t a
cc

ep
ta

nc
e

ra
tio

20% abnormal flows
80% abnormal flows

(a) Unmatched packet proportion threshold αr = 0.1

300 350 400 450 500 550 600
Packet_in message budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Un
m

at
ch

ed
 p

ac
ke

t a
cc

ep
ta

nc
e

ra
tio

20% abnormal flows
80% abnormal flows

(b) Unmatched packet proportion threshold αr = 0.3

Fig. 3: INFAS performance under varying packet_in message budget C

0.05 0.10 0.15 0.20 0.25 0.30
Unmatched packet proportion threshold

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Un
m

at
ch

ed
 p

ac
ke

t a
cc

ep
ta

nc
e

ra
tio

20% abnormal flows
80% abnormal flows

(a) packet_in budget C = 400

0.05 0.10 0.15 0.20 0.25 0.30
Unmatched packet proportion threshold

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Un
m

at
ch

ed
 p

ac
ke

t a
cc

ep
ta

nc
e

ra
tio

20% abnormal flows
80% abnormal flows

(b) packet_in budget C = 600

Fig. 4: INFAS performance under varying unmatched packet proportion thresholds αr

s1 performs a four-tuple {Source IP, Source port, Destination
IP, Destination port} matching. For example, when h1 sends
packets to 192.168.0.20:1, according to the concrete flow rule
in s1, the destination IP address 192.168.0.20 is converted
to an internal IP address (10.0.0.2 or 10.0.0.3), and the port
number 1 is mapped to a new port number (e.g. 10). After this
conversion, the packets are sent to the corresponding server.
When an internal server replies with flow packets to h1, the
source IP address is converted back to 192.168.0.20.

The above-described mapping procedure is managed by the
controller. In particular, the controller decides which server
and which port are mapped for a flow coming from h1,
upon receiving the packet_in messages. For each flow, the
controller installs flow rules specifying an output port, and
rewrites the packet’s destination IP address and destination
port. Each concrete flow rule is configured with an idle timeout
of two seconds, to reduce the number of concrete flow rules.

2) Launching the CPS attack: An aggressive CPS attack
is emulated by a script running in h1. More precisely, the

script generates a large number of unmatched packets from
h1 to 192.168.0.20 using 2000 different destination ports. As
we already described in Section II, if the packet inter-arrival
time of a flow exceeds the idle timeout, a large number of
packet_in messages are generated. Particularly, we define
two types of flows, namely normal flows and abnormal flows.
The packet intervals of both flow types follow the Gaussian
distribution, but the normal flow has a mean value of 0.5 and
the abnormal flow has a mean value of 2.5. By varying the ratio
between the abnormal and normal flows, we could emulate
different severity of the CPS attacks. In the experiments, we
call this parameter as the abnormal flow percentage.

3) Evaluation metrics and focused parameters: We use
two system performance metrics: (i) the unmatched packet
acceptance ratio β and (ii) the switch throughput. The first
metric enables to evaluate the mitigation effectiveness of
INFAS against the CPS attack. β = Ac/Ai, where Ac is the
number of unmatched packets that finally trigger generation of
packet_in messages, and Ai is the number of unmatched

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 371
Authorized licensed use limited to: KIT Library. Downloaded on October 08,2023 at 13:22:38 UTC from IEEE Xplore. Restrictions apply.

packets forwarded to INFAS. As for the switch throughput, it
is obtained by measuring the experienced bandwidth between
two hosts connected with the protected switch. We use this
metric to show that INFAS is able to reduce the workload of
the protected switch. In order to evaluate the impact of the
system parameters, we experiment with varying packet_in
budget C values and unmatched packet proportion thresholds
αr.

C. Results

1) Unmatched packet acceptance ratio: We conduct two
groups of experiments to measure the unmatched packet
acceptance ratio. In the first group, we fix the unmatched
packet proportion threshold αr ∈ {0.1, 0.3}, and vary the
packet_in budget C from 300 to 600. In the second group,
we fix C ∈ {400, 600}, and vary αr from 0.05 to 0.3. In both
groups of experiments, we experiment with two different CPS
attack severity levels: (i) light CPS with 20% abnormal flows
and (ii) severe CPS with 80% abnormal flows.

Fig. 3 depicts the impact of the packet_in budget C. In
particular, Fig. 3a shows INFAS performance under different
packet_in budgets, when αr is fixed to 0.1. We can see
that, in the light CPS case, β stays small when only a small
number of packet_in messages are allowed to be generated
within a time slot. After that, it increases almost proportionally
to the budget C. As for the severe CPS case, the acceptance
ratio β always remains below 0.2, no matter how C changes.
This means that INFAS blocks the majority of unmatched
packets from h1.

Fig. 3b shows the system performance when αr is fixed
to 0.3. We can see that the acceptance ratio β increases
with C, under both attack levels, but with smaller values in
the case of the severe attack. The reason is that both attack
levels are classified as an overload case or suspicious case by
the flow management algorithm, when the unmatched packet
proportion threshold αr is relatively large.

These results can be interpreted as follows: in the light
CPS case, the proportion of unmatched packets is relatively
small and just a bit lower than the threshold αr. The flow
management algorithm treats it as an overload case, thus
enforces a light penalty. However, in the severe CPS case, a
large portion of packets from h1 cannot match concrete flow
rules due to their long inter-arrival time. The flow management
algorithm classifies it as an attack case, thus enforces a heavy
penalty on the acceptance probability p.

Fig. 4 depicts the impact of the unmatched packet proportion
threshold αr on INFAS performance. Fig. 4a shows the
performance change under different values of αr, when C is
fixed to 400. In general, we can see that increasing αr allows
more unmatched packets to trigger table-miss events. In the
light CPS case, β is relatively small (around 0.7) when αr is
set to 0.05, and it starts to become constant once αr reaches a
certain value. The reason is that when αr is large enough, the
light CPS case will be treated as an overload case by the flow
management algorithm. In this case, the unmatched packet
acceptance ratio β is only determined by the packet_in

budget C and the total number of unmatched packets. This
point can be also observed in Fig. 4b.

With the above presented results, we confirm that INFAS
can effectively block malicious flow packets that deliberately
trigger table-miss events in SDN networks. By this, INFAS
significantly mitigates CPS, depending on the severity level
of the attack. Furthermore, the message budget C and the
unmatched packet proportion threshold ar have impacts on
INFAS performance. In addition, choosing proper values for
C and αr in real systems requires to measure the controller
capacity and to estimate the traffic patterns. When this is
achieved, INFAS parameters can be tuned in an adaptive way.

2) Switch throughput: We measure the switch throughput
by connecting an additional pair of Docker containers to s1,
and configuring several static concrete flow rules to allow
their mutual communication. In our evaluation, we treat their
experienced bandwidth as the throughput of the switch. The
standard tool iperf3 [21] is used to test the bandwidth under
three scenarios: (i) attack-free system, (ii) a system under a
severe CPS attack with INFAS enabled, and (iii) a system
under a severe CPS attack without INFAS. Note that, due to
the fact that OvS operates in the kernel mode, its throughput
can reach about 47Gbit/s on the used hardware. Under the
severe CPS attack without protection, the switch throughput
drops to around 35Gbit/s. When enabling INFAS, we achieve
roughly 44Gbit/s. Such an improvement (about 26%) confirms
that INFAS effectively blocks a large amounts of unmatched
packets before they trigger the generation of packet_in
messages. That is to say, the workload of the switch CPU and
the netlink channel connecting the OvS kernel module and
OpenFlow daemon is dramatically reduced, which contributes
to the improved switch performance.

V. CONCLUSION AND FUTURE WORK

The Control Plane Saturation (CPS) is a DoS attack being
capable to significantly disrupt the operation of SDN. The
adversary floods the data plane with flow packets not matching
the stored flow rules. As a consequence, floods of control
packets are exchanged between the switches and the controller.
We presented INFAS, a defense scheme for protecting SDN
against CPS. INFAS is installed on the rapidly increasing
in-network commodity servers, which are used in modern
networks mainly to support NFV. The switch forwards the
flow packets that do not match any of its concrete flow rules to
a nearby INFAS module. INFAS evaluates these packets, and
accordingly decides either to return them to the corresponding
switches or to drop them.

In the future, we plan to improve the current design of
INFAS in several ways. In particular, we will investigate
approaches to adjust INFAS parameters in an adaptive way,
for different types of SDN networks. Another idea for in-
vestigation is to support cooperation among multiple INFAS
modules to improve detection and mitigation of distributed
DoS attacks.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference372
Authorized licensed use limited to: KIT Library. Downloaded on October 08,2023 at 13:22:38 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (DFG) as part of the A12 and A08 projects within the
Collaborative Research Center (CRC) 912 – HAEC. It was
also supported by the German Federal Ministry of Education
and Research (BMBF) as part of the project “fast robotics”
under grant 03ZZ0528E.

REFERENCES

[1] O. N. Fundation, “Software-defined networking: The new norm for
networks,” ONF White Paper, vol. 2, pp. 2–6, 2012.

[2] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 623–654, 2016.

[3] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “Flooddefender: Pro-
tecting data and control plane resources under sdn-aimed dos attacks,” in
Proceedings of the 36th IEEE Conference on Computer Communications
(INFOCOM), 2017, pp. 1–9.

[4] S. Wang, K. G. Chavez, and S. Kandeepan, “Seco: Sdn secure controller
algorithm for detecting and defending denial of service attacks,” in
Proceedings of the IEEE Information and Communication Technology
(ICoIC7), 2017, pp. 1–6.

[5] N.-N. Dao, J. Park, M. Park, S. Cho et al., “A feasible method to
combat against ddos attack in sdn network,” in Proceedings of the IEEE
International Conference on Information Networking (ICOIN), 2015, pp.
309–311.

[6] D. Intel, “Data plane development kit,” 2014.
[7] S. Shin and G. Gu, “Attacking software-defined networks: A first feasi-

bility study,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, 2013, pp. 165–166.

[8] L. Dridi and M. F. Zhani, “Sdn-guard: Dos attacks mitigation in sdn
networks,” in Proceedings of the IEEE 5th International Conference on
Cloud Networking (Cloudnet), 2016, pp. 212–217.

[9] L. Wei and C. Fung, “Flowranger: A request prioritizing algorithm for
controller dos attacks in software defined networks,” in Proceedings of
the IEEE International Conference on Communications (ICC), 2015, pp.
5254–5259.

[10] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” Proceeding of the IEEE/IFIP
Dependable Systems and Networks (DSN), 2015.

[11] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable
and vigilant switch flow management in software-defined networks,” in
Proceedings of the ACM conference on Computer & communications
security (SIGSAC), 2013, pp. 413–424.

[12] A. M. Bahaa-Eldin, E. E.-E. ElDessouky, and H. Dağ, “Protecting
openflow switches against denial of service attacks,” in Proceedings
of the IEEE International Conference on Computer Engineering and
Systems (ICCES), 2017, pp. 479–484.

[13] M.-A. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia,
H. Koumaras, G. Gardikis, and F. Liberal, “Enhancing vnf performance
by exploiting sr-iov and dpdk packet processing acceleration,” in Pro-
ceedings of the IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN), 2015, pp. 74–78.

[14] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 34–47, 2015.

[15] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. Ra-
makrishnan, and T. Wood, “Opennetvm: Flexible, high performance
nfv,” in Proceedings of the IEEE NetSoft Conference and Workshops
(NetSoft), 2016, pp. 359–360.

[16] “MinnowBoard Turbot Dual Ethernet Quad Core System,”
https://store.netgate.com/MBT-4220-system.aspx [Accessed 05-
September-2018].

[17] “Open vSwitch,” https://www.openvswitch.org [Accessed 05-September-
2018].

[18] “ovs python api,” https://github.com/PinaeCloud/ovs-api [Accessed 05-
September-2018].

[19] “Floodlight SDN controller,” http://www.projectfloodlight.org/floodlight/
[Accessed 05-September-2018].

[20] “Docker container,” https://www.docker.com [Accessed 05-September-
2018].

[21] “iperf3,” https://iperf.fr/iperf-download.php [Accessed 05-September-
2018].

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 373
Authorized licensed use limited to: KIT Library. Downloaded on October 08,2023 at 13:22:38 UTC from IEEE Xplore. Restrictions apply.

