
SWAP: protecting pull-based P2P video streaming
systems from inference attacks

Giang Nguyen†, Stefanie Roos, Benjamin Schiller, and Thorsten Strufe†
TU Dresden † and SFB 912 - HAEC

{giang.nguyen, stefanie.roos, benjamin.schiller1, thorsten.strufe} <at> tu-dresden.de

Abstract—In pull-based Peer-to-Peer video streaming systems,
peers exchange buffer maps to reveal the availability of video
chunks in their buffer. When collecting these buffer maps, a
malicious party can infer the system’s overlay structure and
even identify head nodes, the direct communication partners
of the stream’s source. Attacking these head nodes can isolate
peers from the source resulting in a disruption of the video
dissemination for most peers in the system. We introduce a
lightweight SWAP scheme, which allows peers to proactively
change their partners, to reduce the chance of head nodes to
be identified by such an inference attacker. Extensive simulation
studies demonstrate that our scheme effectively undermines the
attack’s accuracy in identifying head nodes. So, SWAP lowers the
chunk miss ratio while causing only a slight increase in signaling
overhead.

I. INTRODUCTION

The constantly growing demand for the delivery of video
streams requires a solution to disseminate them over the
Internet in a cost-effective and resource-efficient manner.
Peer-to-Peer (P2P) video streaming systems have become a
viable solution. In these systems, the participating peers form
an overlay network and provide resources, including upload
bandwidth, to disseminate video streams. The main challenge
is to construct overlays which are resilient to both churn and
sabotage. Most deployed P2P video streaming systems use
a pull-based architecture [1]. In these systems, peers establish
and maintain a mesh overlay and explicitly request video pack-
ets (or chunks) from their partners. This requires peers to know
which chunks are available at which partner. Hence, peers
periodically exchange buffer maps, small packets containing
information about the availability of chunks. Hei et al. [2]
make use of these buffer maps to infer the overlay structure
of PPLive [8], a pull-based system. Peers form distinguishable
tiers that indicate the flow of the video dissemination from the
source via its partners (or head nodes) to other peers.

The overlay structure revealed via this exchange of buffer
maps can be abused by an adversary, called inference attacker,
to perform Denial-of-Service (DoS) attacks to the system. If
an attacker targets head nodes, the resulting damage can be
severe and leads to the isolation of peers and the disruption
of video dissemination. Therefore, it is critical for pull-based
systems to reduce the chance of inferring head nodes from
buffer maps.

Toward this end, we propose SWAP, a lightweight partner
swapping scheme as a countermeasure against an inference

attacker. Our approach is to increase the organized dynamics of
the system, meaning that peers constantly change their partners
in a proactive manner. Consequently, the attacker is unable
to accurately infer the overlay structure and identify head
nodes. Specifically, each peer nominates one of its partners as
a candidate to replace itself. The nomination can be forwarded
several times to ensure a more diverse swapping, which further
hinders the inference attacker. We evaluate the accuracy in
identifying head nodes using both theoretical bounds and
concrete simulations. Our comparison of SWAP with state-
of-the-art solutions indicates that SWAP greatly reduces the
severity of an inference attack.

Our contributions in this paper are two-fold: First, we show
that inference attacks are highly damaging when based on
an accurate identification of head nodes. Second, we present
SWAP, a partner swapping scheme as the countermeasure
against the inference attacker. Our simulation studies indicate
that SWAP drastically reduces the damage caused by the
inference attacks.

The remainder of this paper is structured as follows: After
discussing the related work in Section II, we describe the
inference of the overlay structure in Section III. Afterwards,
Section IV and Section V present the attacker model and our
SWAP scheme respectively. Next, we introduce the analysis of
the inference attacker and the countermeasure in Section VI.
After discussing the results in Section VII, we conclude the
paper in Section VIII.

II. RELATED WORK

The construction of resilient overlays, which are robust to
churn and resistant to attacks, for video dissemination has
been an area of active research for more than a decade. In
the following, we describe the most important approaches,
differentiated in push-based and pull-based systems.

Push-based systems like Probabilistic Resilient Multicast
(PRM) [3] and FatNemo [4] organize peers into a single
multicast tree, i.e., each peer receives the complete video
stream from a single parent peer. PRM strengthens the overlay
by establishing redundant connections to increase connectivity.
FatNemo reduces the height of the tree by moving peers
with more children closer to the source. Both approaches are
robust to random failures but cannot protect the system against
attacks, since these systems depend on a few peers close to the
source. When those nodes are shut down, the whole system is
disrupted.978-1-5090-2185-7/16/$31.00 c©2016 European Union

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

To address the fragility of these single-tree topologies,
multi-tree overlays have been proposed. Each peer has multiple
parents, which forward parts of the video stream, so-called
stripes, to their children. Systems like [5], [6] tackle both
problems of churn and sabotage by minimizing the direct
dependency between any two peers throughout all trees. Peers
are organized into inner-node disjoint spanning trees, which
delivers the chunks in separate stripes. The resilience of those
systems was proven theoretically, but they have not been
deployed in real-world environments.

The majority of deployed systems like DONet [7] and
PPLive [8] are pull-based: Peers construct a mesh overlay
and periodically request video chunks from their partners. The
mesh overlay allows peers to maintain multiple source-to-peer
paths, which improve pull-based systems’ robustness to churn.
However, a recent measurement study on PPLive shows that
the information from buffer maps reveals the overlay structure
of the system, which is clustered into tiers. The knowledge of
this structure enables the attacker to shut down the partners of
the source, the so-called head nodes, which heavily disrupts
the video dissemination. The striping scheme [9] addresses
these issues by enforcing peers to request chunks from a
diverse subset of partners, which significantly increases the
number of partners. This makes it more costly for attackers
to remove all head nodes and thereby increases the system’s
resilience. However, the striping scheme cannot avoid the
inference attack itself.

In summary, the problem of constructing resilient overlays
for P2P streaming systems has been tackled often to achieve
robustness to churn and resistance to DoS attacks. However,
how to protect the overlay of pull-based streaming systems
against inference attacks is still an open question.

III. INFERRING THE OVERLAY STRUCTURE

The information from buffer maps in a pull-based P2P video
streaming system can provide knowledge about the overlay
structure of the system [2]. Fig. 1 illustrates the mapping from
the availability of chunks in a video buffer into a buffer map
consisting of an array of “0” and “1” bits. The buffer head’s
sequence number (or buffer head, for short) indicates the latest
chunk in the buffer. Peers’ buffer heads differ from one another
in general depending on network conditions (such as jitter) and
who their partners are. For example, a peer connecting directly
to the source can receive video chunks significantly earlier
than others, who do not have direct connections to the source.
Comparing the buffer heads of peers buffer maps, therefore
provides their relative position in the overlay structure.

Let’s consider two peers u and v at time ti with their buffer
maps arrived at time tu,i and tv,i containing buffer heads hu,i
and hv,i, respectively. Let L denote the chunk size and r the bit
rate of the video stream. The relative offset of u with respect
to v is defined as follows:

δu,i := (hu,i − hv,i)− (tu,i − tv,i) · r/L (1)

Now, we compute δu,i for all peers u over time using a
common reference point. Peers’ relative offsets exhibit a clear

Fig. 1. A buffer map, partially filled with downloaded video chunks and
available for playing back. Buffer’s head is the newest available chunk.

and constant ordering. From those offsets, peers closer to the
source are clearly distinguished from those farther away.

IV. THE INFERENCE ATTACKER

In this section, we describe the attacker model used in
the remainder of this paper. We derive the model from the
inference technique presented in the previous section. That
technique has been used by Hei et al. [2] to infer the overlay
structure of a small setup of PPLive. We extend the technique
in the inference attacker model to identify head nodes and
experiment it on DONet, a conventional yet more generic pull-
based system.

The attacker’s goal is to prevent peers from receiving a
continuous video stream for a certain period of time. To
achieve this, it attacks a set of peers to break the overlay
structure of the system. We assume that an attacker A is able to
shut down arbitrary nodes except the source within the system.
However, A is limited with regard to the number of nodes x it
can shut down at any given time, referred to as the attacker’s
budget. Given this limitation, the attacker must attempt to shut
down the most relevant peers, the head nodes, to cause the
most damage for some period after the attack.

In the following, we outline the approach followed by the
inference attacker. It consists of three steps: probing, inference,
and attack.

1) Probing buffer maps: The attacker collects buffer maps
from peers to aggregate the contained information and conse-
quently infer the overlay structure of the system. This accu-
mulation of buffer maps can be performed either by actively
requesting them or by storing them from regular buffer map
exchange operations. While the regular buffer map exchange
is a valid operation in all pull-based systems, active requests
are only allowed in some systems, e.g., in [2]. Regardless
of the way this collection is implemented, buffer maps are
periodically gathered in batches, called probes. In an ideal
attack scenario, the attacker obtains the buffer maps from all
active peers in the system for each probe. However, to be more
realistic, we assume that the attacker obtains a buffer map from
a peer with a probability q (0 ≤ q ≤ 1) which depends on
network latency, congestion, etc. Subsequently, we assume that
an attacker performs a total of m probes p1, p2, . . . pm starting
every Tp seconds. These probes should be performed shortly
before the attack to ensure an up-to-date information.

2) Inferring the overlay structure: First, the attacker selects
a reference peer v, potentially under its control, whose buffer

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

map appears in all probes. Using Eq. 1, the attacker calculates
the offset δu,i for each buffer map from a peer u 6= v collected
during the probe pi. After m probes, the attacker calculates
the average offset δ̄u of each probed peers u as follows:

δ̄u :=

∑m
i=1 δu,i
m

(2)

3) Attacking the system: Head nodes receive video chunks
before other peers, so that their averaged offset should be
higher. Therefore, the attacker sorts the list of all probed peers
u in descending order of their averaged offsets δ̄u. From this
sorted list, the attacker selects the top x nodes to attack and
thereby shut down. Assuming that these nodes are closest to
the source, attacking them should cause the greatest damage
possible with the attacker’s resources.

In summary, this section presents the inference attacker, a
practical attack model that works in three steps: (i) collecting
information about peers by probing their buffer maps; (ii)
inferring the system’s overlay structure; and (iii) executing
attacks by targeting the most promising peers. Note that we
use a simplified version of this strategy for our theoretical
analysis to limit the complexity.

V. THE SWAP SCHEME

In this section, we describe the SWAP scheme to counter
the inference attacker. Such a countermeasure needs to satisfy
the following three requirements:

1) The countermeasure should reduce the attack’s accuracy
significantly in order to effectively mitigate the negative
impact of the attacker.

2) The performance penalty should be reasonably low.
3) The additional overhead should be low.
To fulfill the first requirement, there are two possibilities to

undermine the attack’s accuracy to infer the overlay structure,
especially in identifying head nodes. First, we could insert
bogus information into the exchanged buffer maps so that the
attacker cannot reliably infer the overlay structure. Second,
we could enforce the overlay structure to constantly change,
so that the overlay structure inferred by an attacker is quickly
outdated. Adding bogus information can confuse the attacker,
but it confuses benign peers as well, causing inefficient re-
quests for video chunks. Consequently, this reduces the overall
system’s performance. Hence, this approach directly violates
the second requirement and is therefore eliminated.

The second approach requires peers to proactively change
their partners. Consequently, the system introduces more dy-
namics and overhead. However, we have also learned that
pull-based P2P streaming systems are highly robust to the
dynamics of peers. So, there potentially exists a certain level
of dynamics that minimizes negative impacts to the system
while allowing the system to mitigate damages caused by an
inference attacker.

A. Basic idea behind the SWAP scheme

The basic idea of our SWAP scheme is to enforce peers
and especially the source to proactively change their partners.

This means to replace an existing partner with another peer
(or so-called replacement partner). At this point, there are two
follow-up questions for the swap operation:

1) Which partners should be dropped?
2) Which replacement partner should be selected?
The answer to the above two questions should minimize

negative impacts on the system. It is however hard to fulfill the
requirement if peers have to decide from their local knowledge
only. Our strategy is to leverage the information in buffer
maps received from a peer’s partners. They provide peers
a little more information about their neighboring peers and
consequently the local structure between themselves.

To simplify the explanation in this section, we introduce
the concepts of upstream and downstream partners of a peer
v, meaning whether they tent to receive video chunks earlier
or later than v does. To quantify the timing of received chunks,
we use Eq. 2 to calculate the average offsets of v’s partners
with regard to v itself from recently received buffer maps. Let
δ̄u denote the average offset of v’s partner u. Since δ̄v = 0, u
is called an upstream partner of v if δ̄u > 0 and a downstream
partner otherwise. The separation of partners basing on their
average offsets is illustrated in Fig. 2.

Fig. 2. Peer v’s partners: upstream (u1, u2) and downstream (u3, u4, u5),
given their average offsets satisfy δ̄1 ≥ δ̄2 ≥ 0 ≥ δ̄3 ≥ δ̄4 ≥ δ̄5 (δ̄v = 0
since v is the reference point for itself)

Our answer to the first questions is that a peer selects
a downstream partner to drop, since dropping an upstream
partner reduces the chance of the peer itself in obtaining video
chunks. Regarding the second question, a downstream peer
should also be selected to replace the dropped partner because
it can introduce a potential security issue to do otherwise.
Allowing peers to connect to upstream peers enables malicious
peers to swap frequently, hoping to mount up the overlay
structure to block the source node and disrupt the video
delivery to benign peers.

To summarize, our idea to defend a pull-based P2P stream-
ing system against the inference attack is to allow peers as well
as the source to proactively change their partners. Both the
dropped partner and its replacement should be selected from
downstream peers. Following the above high-level sketch, the
design of SWAP will be detailed next.

B. Design of the SWAP scheme

The main concern here is the selection of a replacement
partner. A straightforward solution is to request a random peer
from the membership service, such as a tracker keeping a list
of active peers in the system. It is, however, very unlikely

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

that peers can obtain downstream replacement partners as
they need. Therefore, preparing a downstream replacement
partner for swapping operations requires a collaboration be-
tween peers. SWAP realizes the collaboration by the following
two primitives, namely partner nomination and nomination
forwarding. After describing those two primitives shortly, we
present the swap operation.

1) Partner nomination: To prepare for swapping opera-
tions, every peer should suggest its replacement candidate
for itself once the peer is dropped by one of its upstream
partners. For that, a partner nomination is required, in which
a downstream peer is suggested as the replacement partner for
the swapping operation. The follow-up question is how a peer
should nominate its partners. In SWAP, a peer nominates its
downstream partners to its upstream ones in a Round-Robin
manner. For example, in the Fig. 2, two among the three
downstream partners {u3, u4, u5} can be randomly nominated
to the upstream ones {u1, u2}. In this way, SWAP nominates
partners evenly to minimize the chance of a partner to be
selected by many peers. Nomination should be performed
periodically to ensure a constant availability of replacement
partners.

2) Nomination forwarding: Accepting nominations from
partners immediately only allows peers to swap with nearby
peers in the overlay. That cannot help the system from an
inference attacker with a large budget. SWAP solves that
problem by requiring peers to forward each nomination several
times towards upstream peers. This way, peers can connect to
more diverse peers whose positions are farther away in the
downstream, further hindering the attacker from inferring the
overlay structure. Therefore, a counter in each nomination
message is introduced. The counter is preset to nf repre-
senting the total number of forwarding until the nomination
is eventually accepted. After each forwarding, the counter is
decremented. When the counter of a nomination reaches zero,
peers should accept that nomination. Decrementing the counter
also prevent nomination messages from circulating forever in
the system, causing overhead. Fig. 3 illustrates two examples
for swapping, where nf equals one and two respectively. In the
former case, A accepts the nomination from C and connects
to this node before dropping its current partner B. In the latter
case, the nomination from D is accepted by A after being
forwarded via C and B. Afterwards, A connects to D before
dropping B.

Fig. 3. Swap operation in which peer A: a) accepts C’s nomination forwarded
via B, connects to C and drops B (nf = 1); or b) accepts D’s nomination
forwarded via C and B, connects to D and drops B (nf = 2). The nomination
message contains the name of the nominated peer and a counter, which is
decremented after each forwarding at an intermediate node.

3) Swap operation: Since an attack can happen at any time,
the system should be ready against those attacks all the time.
The swap operation is therefore executed regularly by each
peer. In each swap cycle, a peer selects a few partners and
swap them with their respective replacement partners obtained
via nominations.

4) Parameters: Our SWAP scheme is characterized by
three parameters for the nomination and swap operations. The
number of nomination forwarding nf needs to be specified.
The minimum value of nf is one, meaning to swap with nearby
peers in the overlay. The greater nf is, the further downstream
peers can be selected for swapping. A too large nf , however,
can lead to circulated nominations and increases the overhead.
The swap operation uses two parameters, namely the swap
interval Ts and the number of swapped partners ms in each
swap operation. Their combination can influence significantly
the resistance to attacks as well as the overall performance
of the systems. Swapping too frequently or swapping too
many partners at once might help the system to change
the overlay structure more swiftly and drastically to avoid
inference attacks. However, this also increases dynamics to
the system that it might be unable to sustain.

C. Specification and Implementation

To integrate our SWAP scheme into an existing pull-based
P2P streaming system, we describe essential adaptations as
follows. To allow for periodic swapping and partner nomina-
tion operations, two timers are required for each peer. The
first timer is triggered every Tn seconds to update the peer’s
partners about its nominated peer’s address. The second timer
is triggered every Ts seconds to execute the swap operation
and its parameters.

VI. THEORETICAL ANALYSIS

The purpose of this section is twofold. First, we aim to
show that an adversary can easily identify head nodes in a
stable system by frequently requesting buffer map probes.
In particular, we determine a lower bound on the attack’s
accuracy, i.e., the fraction of sabotaged head nodes, for m
requested buffer maps. Based on this result, one can also
determine an upper bound on the number of probes required
to achieve a certain accuracy.

Second, we aim to prevent the attacker from determining
the head nodes. For this purpose, we proposed to regularly
swap downstream nodes. In this section, we determine how to
choose the swapping interval Ts such that the attack’s accuracy
is guaranteed to remain below a certain threshold. In contrast
to the first bound, we now determine an upper bound on the
attack’s accuracy if the attacker can request up to m buffer
map probes in one swapping interval. If we require the attack’s
accuracy to be below a certain threshold, our results enable us
to determine a number m of buffer map probes the attacker
may be allowed to request in order to confirm with the required
threshold. The length of the proposed swapping interval is
determined by multiplication of m with the time between two
subsequent requests for buffer map probes.

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

A. Identifying Head Nodes

We aim to derive a lower bound on the attack’s accuracy
without topology changes. Such a lower bound indicates that
the attacker can identify critical nodes with high accuracy at
a low cost. First, we formalize the problem of identifying the
head nodes in a stable system. Based on the formalization, we
then simplify the mathematical model to use common notions
from the area of probability theory. Last, we obtain the desired
bound for the simplified problem.

In order to obtain lower bound on the accuracy an attacker,
we propose one attacker strategy and then compute a lower
bound for the proposed strategy. Note that we do not claim that
the proposed attack strategy inevitably offers the maximum
accuracy. However, as we are interested in a lower bound on
the achievable accuracy, analyzing one strategy is sufficient.

Recall that N is the total number of nodes in the system,
Nh the number of head nodes, and x the attacker’s budget.
Furthermore, the attacker requests m probes of buffer maps.
A node’s buffer map is contained in a probe with probability q.
Let Ym,p be the random variable denoting the attack accuracy,
i.e., the fraction Nx/Nh with Nx denoting the number of
head nodes the attacker sabotages. Formally, we thus aim to
determine a lower bound on E(Ym,p), with the expectation
being defined over all possible buffer map probes.

In order to solve the problem, we first introduce some
additional notation. Let ord(i, j) be the j-th node to receive
the i-th chunk. We enumerate the buffer maps probes with
α = 1 . . .m, and let C(v) ⊂ {1, . . . ,m} indicate the
probes containing v’s buffer map. Note that C corresponds
to a function from the set of nodes V into the power set
P ({1, . . .m}), i.e., the set of all subsets, of possible buffer
map probes indices {1, . . . ,m}. Furthermore, for the α-th
probe, let lci(α, v) denote the index of the latest chunk in
the buffer map of v if α ∈ C(v). We can now formalize our
assumptions and results in an adequate manner.

We make the following assumptions to obtain in our math-
ematical model for deriving the attack’s accuracy. First, we
assume that the order in which nodes receive chunks is the
same for all chunks, i.e., ord(j) = ord(i1, j) = ord(i2, j)
for all i1, i2. As a consequence, we can enumerate nodes
v1, . . . , vN such that ord(j) = vj . Furthermore, we assume
that a probe of buffer maps only contains buffer maps from
one specific time t0, rather than buffer maps from varying
points in time. In this manner, vj has received at least as
many chunks as vl for j < l, i.e., if α ∈ C(vj) ∩ C(vl),
then lci(α, vj) ≥ lci(α, vl). Last, we assume that all head
nodes receive chunks before non-head nodes, i.e., the head
nodes correspond to the nodes v1, . . . , vh. In practice, network
dynamics, inhomogenous latencies, and network jitter preclude
the above assumptions. Our model could account for such
an instability, as long as the variation is small, by including
probabilistic changes in the order. However, the drastically
increased model complexity is disproportional to the expected
gain. We assume that the attacker identifies head nodes based
upon the ’intuition’ that their latest chunk is of a higher index.

The above assumptions merely formalize this intuition in a
straightforward manner.

Now, we describe the attacker strategy for which we derive
the lower bounds. First, the attacker only includes nodes for
which it received any buffer maps in its list of potential head
nodes. So, let VC = {v ∈ V : C(v) 6= ∅} be the set of
such nodes. Furthermore, let v ≺a u denote the fact that the
adversary perceives v to receive chunks earlier than u. Let
MC(v) = {u : v ≺a u} be the set of nodes the adversary
perceives to receive chunks later than v for the buffer map
probes defined by the sets C(v). We suggest the attacker to
sabotage x nodes v ∈ VC for which |MC(v)| is maximized,
i.e., the attacker sabotages nodes such the number of nodes
which are guaranteed to receive chunks later than these nodes
is maximized. The motivation for the strategy is the increased
probability that such nodes are likely to be close to the
source as many nodes receive chunks later. It remains to detail
how the adversary derives MC(v), or more specifically the
partial order relations, given the buffer map probes. Our key
observations for determining partial order relations between v
and u for one probe are

1) v ≺a u if α ∈ C(v) ∩ C(u) and lci(α, v) > lci(α, u),
and

2) v ≺a u if there exists a node w with v ≺a w and
w ≺a u.

The first condition holds because clearly vj received one chunk
before u and thus by consistency of the order always receives
chunks first. The second condition follows by the transitivity
of a partial order. Thus, by successively considering each
probe and applying the above rules, the attacker can determine
MC(v) for all v ∈ VC and thus select its x nodes, breaking
ties randomly. With regard to the proposed attack strategy,
we can now derive a lower bound on the expected attack
accuracy. Note that this attack strategy is different to the one
suggested in Section IV. The reason lies in the fact that the
order of receiving chunks is not necessarily strictly constant
in practice due to network jitter. Nodes with similar delays
to the source receive chunks in a different order. Thus, the
buffer map probes in practice do not result in a partial order,
so that a more complex strategy is required to overcome such
differences in the retrieval order. However, in our simplified
model, the above attack strategy is sufficient and reflects the
main idea of both attack strategy: identify head nodes due to
their low delay to the source. By using a simplified, possibly
less accurate attack strategy, we obtain a good lower bound
and focus on the main ideas for the attack’s effectiveness.

For simplification, we assume that u and v’s buffer maps
always allow us to determine the partial order relation be-
tween the nodes, i.e., we have either lci(α, u) > lci(α, v)
or lci(α, v) < lci(α, u). In practice, the above assumption
clearly does not hold. As the number of pairs such that
lci(α, v) = lci(α, u) depends on the streaming rate and the
latencies, allowing for this possibility increases the model
complexity and reduces the generality of the approach by
incorporating system-dependent parameters. Thus, we first

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

consider the simplified problem.

Proposition VI.1. Let

∀j 6= l, α ∈ C(vj) ∩ C(vl) =⇒ lci(α, vj) > lci(α, vl). (3)

Then a lower bound on the expected attack’s accuracy is

E(Ym,q) ≥
∑

C:V→P({1,...,m})

{j ≤ Nh : |VC | − |MC(vj)| < x}
Nh

(4)
m∏
i=1

q|C(vi)| (1− q)m−|C(vi)|

with MC(vj) = {v : vj ≺a v} denoting the set of nodes the
attacker perceives to receive chunk later than vj .

Proof. Let BM denote buffer map probes known to the
attacker and consider one realization of BM uniquely defined
by a function C. We derive a lower bound acc(C) on the
accuracy of the attacker for the buffer map probes C assuming
that the attacker utilizes the above strategy. Afterwards, we
determine the probability P (BM = C) for this buffer map
probe. Formally, we hence obtain the bound by

E(Ym,q) =
∑

C:V→P({1,...,m})

acc(C)P (BM = C). (5)

In order to determine acc(C), recall that the attacker sab-
otages x nodes v for which the sets MC(v) is of maximal
size. Consider that if less than x nodes are contained in
VC \ MC(vj), there are also less than x nodes v with
|MC(v)| ≥ |MC(vj)|. We shortly prove the above statement.
Let v ∈ MC(vj), i.e., we have vj ≺a v. Furthermore, for all
nodes w ∈MC(v), v ≺a w holds. Hence, by the definition of
MC(v), we have MC(v) ⊂MC(vj). Due to the anti-symmetry
of ≺a, vj /∈MC(v) and thus the subset MC(v) is a real subset
of MC(vj). So, |MC(v)| < |MC(vj)| for all v ∈ MC(vj).
Thus, a head node vj is guaranteed to be sabotaged if all but
x nodes are contained in MC(vj), resulting in the lower bound

acc(C) ≥ {j ≤ Nh : |VC | − |MC(vj)| < x}
Nh

(6)

on the attack’s accuracy.
Now, we compute the probability P (BM = C) of certain

buffer map probes. Note that each probe contains the buffer
map of a node v with probability q. Thus, the probability
of v’s buffer map to be contained in the probes specified by
C(v) is q|C(v)| (1− q)m−|C(v)|. As buffer maps are probed
independently, we indeed get

P (BM = C) =

N∏
i=1

q|C(vi)| (1− q)m−|C(vi)| . (7)

The claim follows by inserting Eq. 6 and Eq. 7 in Eq. 5.

Note that Eq. 4 require computation cost exponential in
the number of requested buffer maps. Thus, we apply Monte
Carlo sampling when computing the desired bounds for our
evaluation.

B. Swapping Interval

In this section, we determine an upper bound on the
expected attack accuracy if all nodes switch ms downstream
partners each Ts seconds. From such a bound, we can obtain
the swapping interval Ts and the number of swapped nodes
f per interval in order to maintain an attack’s accuracy below
a certain threshold. We assume that the attacker continuously
requests buffer maps and then decides to sabotage x nodes at
some point in time. We bound the attack’s accuracy of this
attack. Note that our bound holds regardless of the attacker’s
strategy.

Proposition VI.2. Let Tp be the interval at which the attacker
requests buffer map probes, q be the probability of node’s
buffer map to be probed, let Ts = m · Tp − Tinit be the
swapping interval with Tinit denoting the time a new head
node requires to catch up to the old head nodes with regard
to the number of received chunks and ms be the number of
swapped nodes. Let Ax denote the event that newly selected
head nodes are not chosen from the x nodes currently marked
for sabotage. An upper bound on the expected attack accuracy
Zm,q,ms

at any point in time is given by

E(Zm,q,ms |Ax) ≤ 1

m

∞∑
j=1

(
1− ms

Nh

)j−1
ms

Nh
(8)

m−1∑
i=0

(
1− (1− q + q(1− q)x)mj+i

)
.

Proof. The main idea of the proof is that the attacker has
to be able to compare the buffer maps of new head nodes
with its current x candidates for sabotage before it considers
the node as a new head node. This need for comparison is
independent of the actual attacker strategy. We first derive an
upper bound on the probability that a head is detected using
γ buffer map probes and secondly derive the probability that
the attack requested γ buffer maps since the head node caught
up with the other head nodes. Formally, let I be the event that
a random head node is correctly identified and R the number
of buffer map probes requested by the attacker after the new
head node caught up.

E(Zm,q,ms
|Ax) =

∞∑
γ=1

P (I|R = γ)P (R = γ). (9)

In the following, we determine P (I|R = γ) and P (R = γ).
When considering P (I|R = γ), note that for one probe,

i.e., γ = 1, the probability that a comparison is not possible
is given by 1− q+ q(1− q). The probability follows because
either v’s buffer map is not contained in the probe or v’s buffer
map is contained but none of the buffer maps of the x nodes.
As the probes are chosen independently, we obtain

P (I|R = γ) = 1− (1− q + q(1− q)x)γ , (10)

the complementary probability of the event that a comparison
is not possible for all γ probes.

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

It remains to determine P (R = γ). Note that R = m ·R1 +
R2 with R1 denoting the number of swaps and R2 denoting the
number of buffer map probes considered since the last swap.
R2 is uniformly distributed in 0, . . . ,m− 1. For determining
R1, note that the probability to swap a certain head node is
ms

Nh
, the fraction of swapped head nodes per swap. Thus, the

number of swaps since a certain node was last swapped is
given by a hypergeometric distribution with parameter mS

Nh
.

Rewriting γ = j ·m+ i, we obtain

P (R = γ) = P (R1 = j, R2 = i) =

(
1− mS

Nh

)j−1
mS

Nh

1

m
.

(11)

Thus, we have derived the missing terms in Eq. 9. The claim
in Eq. 8 follows by inserting Eq. 10 and Eq. 11 in Eq. 9 and
elementary mathematical operations.

We have derived the desired bounds on the attack’s accuracy
for our (simplified) model. In the following, we compare these
bounds to the attack’s accuracy in a simulation study and relate
the attack’s accuracy to the quality of service, measured by the
chunk miss ratio.

VII. EVALUATION

In this section we investigate the impact of the infer-
ence attacker on pull-based systems with and without SWAP.
Specifically, we would like to answer the following three
questions: i) How accurate does the inference attacker identify
head nodes? ii) To which extent does SWAP increase the
resilience of pull-based systems against the inference attacker?
iii) How large is the additional overhead of SWAP? We start
by describing the metrics and our simulation first.

A. Metrics

To measure the resilience, we define the chunk miss ratio
as the fraction of chunks that missed their play-out deadlines
divided by all chunks that should be played out. We use that
metric, instead of the commonly used continuity index, since
the two metrics are complementary to each other and the
miss ratio is more intuitive to quantify the system’s damages.
Furthermore, we introduce two subsequent metrics to look at
the chunk miss ratio from two perspectives: average miss ratio
which is the average chunk miss ratio over a significant period
of time after the attack and maximum miss ratio, which is the
maxima of per-second chunk miss ratios during that period.
The latter estimates the upper limit of damages that the attacks
can cause to the system. Additionally, to understand the direct
consequence of the inference attack, we introduce the attack’s
accuracy, which is the fraction of accurately attacked head
nodes over all available head nodes. Finally, we measure the
signaling overhead, which is the ratio of the signaling volume
over the total exchanged volume.

B. Simulation model

Our evaluation is conducted using OSSim [10], which
allows for packet-level simulations of different classes of
P2P video streaming systems. Using OSSim, we implement

DONet [7], a conventional pull-based system in the literature.
We use DONet as the representative system for two reasons.
First, DONet’s design and protocol descriptions are docu-
mented in detail, which supports a verifiable implementation
of the system in simulation. Second, DONet’s performance is
comparable to the state-of-the-art [11].

To emulate the realistic characteristics of the underlying
Internet, we use the GT-ITM [12] topology generator to
generate a transit-stub core network consisting of 20 core and
400 edge routers, interconnected by 1212 links. 1000 peers
are randomly attached to the edge routers at the beginning of
each simulation. To simulate peers’ underlying churn model
we use the Pareto and Lognormal distributions for inter-arrival
times and session durations, respectively. The distribution and
their corresponding parameters follow the measurement study
by Veloso et al. [13]. In addition, we allow leaving peers to
rejoin the system after a random period, to maintain a rather
stable system size.

The stream source is constantly fed by a stream of 2500-
Byte video chunks. The streaming bit rate is set to 400 kbps,
which is a typical average rate reported in the literature [14].
Peers with video buffers storing up to 30 seconds of video
chunks start playing out when roughly 20 percent of their
buffers are filled. The upload bandwidth of the source and
peers are 8 Mbps and 1 Mbps respectively. Even though
unrealistic, the assumption of homogeneous peers are rea-
sonable since it eliminates the impact of the peers’ upload
bandwidth in the results and focus only on the resilience of
pull-based systems against attacks. The simulation duration
is 1200 seconds and the attacks are performed at the 800th
second, when the system already reaches its steady state. We
repeat each simulation setting 30 times.

In order to evaluate the strength of the attack and our
defense mechanism, we consider the impact of the probability
q and the number of probes m to the accuracy of the the attack.
The probing interval Tp equals 0.5 seconds in all settings.
Next, we vary q between 0.1 and 1.0, while the value of m
was varied between 1 and 5. The attacker’s budget x is chosen
between 5 and 50 in steps of 5. This completes our set-up for
the evaluation. Due to space constraints, we only show selected
parameter settings. However, the remaining results are similar
and entail the same conclusions.

C. Results

In the following, we first summarize our main findings on
the characteristics of the inference attacker. Afterwards, we
evaluate our SWAP scheme in mitigating the negative impact
of the inference attacker. This also includes the tradeoffs of
our scheme.

1) On the accuracy of the inference attacker: In this sec-
tion, we seek the understanding about the dependence of the
attack’s accuracy to the different parameters of the inference
attacker model. Specifically, we would like to answer the
question: How the probability q and the number of probes
m influence the attack’s accuracy. We compare our simulation
results with the theoretical bound given by Eq. 4.

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
tt
a
c
k
’s

 a
c
c
u
ra

c
y

q

simulation (m = 1)
simulation (m = 3)
simulation (m = 5)

theory (m = 1)
theory (m = 3)
theory (m = 5)

Fig. 4. The dependence of the attack’s accuracy to the probing interval and
the number of considered probes.

We expect that an increased value of q can significantly im-
prove the attack’s accuracy. Moreover, the higher the number
of probes is used to infer the overlay structure of the system,
the better the attack’s accuracy is.

Fig. 4 displays the dependency of the attack’s accuracy on
the probability q and the number of probes m. The results
show the following: (i) The lower bounds from the model pre-
dictions and the simulation results are very close to each other.
Thus, the impact of network jitter on the delay order, which
is ignored in our model, does not seem to have a significant
impact, as the model’s results are validated by the simulations.
Indeed, the simplified model presents a lower bound on the
actual attack’s accuracy. The reason for the difference between
model and simulation is given by the model’s simplified attack
strategy. The attacker only relates two nodes if it can establish
a partial order. A head node vh is only considered identified
if the number of nodes without a clear partial order relation
to vh is less than the attacker’s budget. In contrast, the more
complex attack strategy introduced in Section IV can compare
any pair of nodes. A head node might thus be compared against
nodes for which no clear order can be determined. Even so the
head node vh might thus not be detected as receiving chunks
earlier for certain, the attacker might still sabotage vh as it is
an equally likely targets as other nodes. Thus, the theoretical
bound is slightly lower than the actual result for m > 1.
(ii) The attack’s accuracy is improved with an increased q and
m. Specifically, when m = 1, the attack’s accuracy increases
almost linearly with an increase of q. However, with m > 1
the increase in the attack’s accuracy is larger for a smaller q,
while the increase is less for a larger q. As we can see from
the figure, the results agree with our expectation. There are,
however, some interesting observations. First, if the attacker
can probe buffer maps of all peers in the system, it can identify
all head nodes accurately with only one probe. Second, when
q is small, probing several times can significantly improve the
accuracy of the inference attacker.

In the coming section, we investigate how the SWAP
scheme helps improve the system’s resilience by undermining
the inference attacker.

2) Comparing the resilience of SWAP and DONet: In this
experiment, we would like to answer the question: To which
extent does SWAP increase the resilience of pull-based systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

A
tt
a
c
k
’s

 a
c
c
u
ra

c
y

Attacker’s budget

DONet (simulation)
SWAP (simulation)

SWAP (theory)

Fig. 5. Comparing the attack accuracy when attacking DONet and SWAP,
with respect to the attacker’s budget.

against the inference attacker? We compare our simulation
results with the theoretical bound given by Eq. 8.

As plotted in Fig. 5, the attack’s accuracy increases drasti-
cally from around 0.25 to reach almost 0.8 and 0.7 in cases
of DONet and SWAP respectively when x increases from 5
to 15. However, when x > 20, SWAP limits a stable attack’s
accuracy upto 0.8 while DONet loses most of its head nodes.
Here, the theoretical upper bound is only of limited usefulness
as it overestimates the attack’s accuracy. For all parameter
settings, the theoretical bound is close to 99 %. The reason
for such a high difference between model and simulation lies
in the generality of the model. The upper bound assumes that
a new head node is detected as soon as it is first observed
together with any of the previous candidate nodes. However,
due to the new node’s need to catch up to the other head
nodes, the head nodes are generally identified much later than
predicted. Nevertheless, the theoretical model is of interest as it
gives a guaranteed upper bound, independent of the attacker’s
strategy. Even though a large fraction of head nodes of SWAP
are correctly identified, the inference attacker still misses a
significant fraction of them.

To explore the consequences of the attack’s accuracy on
system’s resilience, we compare the chunk miss ratios caused
by the attacks in both cases of DONet and SWAP. Subse-
quently, we collect the maximum and average chunk miss
ratios. Results of both the SWAP scheme and DONet are
plotted in Fig. 6(a) and Fig. 6(b), respectively. When x > 20,
the inference attacks cause extremely high damages on DONet
with the maximum and average miss ratios of almost 60% and
around 15% respectively. Whereas, under similar attacker’s
budget, SWAP’s maximum and average miss ratios remain
below 3% and 2% respectively. Those results are consistent
with the attack’s accuracy and can be explained as follows.
When some of the head nodes are not attacked, either by lack-
ing attacker’s budget or by incorrectly being identified, they
still connect the source and the remaining peers. The stream
delivery flow is affected but remains connected. Therefore, the
chunk miss ratios are very small. However, when all the head
nodes are correctly attacked, the remaining peers are unable to
obtain video chunks from the source, causing extremely high
chunk miss ratios.

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

M
a
x
im

u
m

 m
is

s
 r

a
ti
o

Attacker’s budget

DONet
swap

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50

A
v
e
ra

g
e
 m

is
s
 r

a
ti
o

Attacker’s budget

DONet
swap

(b)

Fig. 6. Comparing the resilience of SWAP to DONet against the inference attacks in terms of the maximum (a) and average (b) miss ratios.

3) Signaling overhead of SWAP: Finally, we would like
to answer the question: At which cost does SWAP perform in
benign situations? Consequently, we discuss our finding on the
cost of SWAP in terms of the signaling overhead in dependence
with the peers’ number of partners. The results are plotted on
Fig. 7. When the number of partners increases from 6 to 16,
the signaling overhead of DONet ranges from 2.0% to almost
4.5%. On top of that, SWAP generates less than 1% extra
overhead in each configuration. Considering the SWAP alone,
a larger number of forwardings nf reduces the overhead. This
is due to the fact that, the smaller the value of nf the more
peers are able to trigger swap operations, resulting in more
dynamics and signaling overhead in the system.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 6 8 10 12 14 16

O
v
e
rh

e
a
d
 v

o
lu

m
e
 p

e
rc

e
n
ta

g
e

Number of partners

DONet
swap (nf = 3)
swap (nf = 5)
swap (nf = 7)

Fig. 7. Signaling overhead of DONet and SWAP (with different values of
nf) in dependence with the number of partners, in benign scenarios.

VIII. CONCLUSION

This paper addresses the problem of buffer map exchange
in pull-based P2P video streaming systems, in which an
inference attacker collects buffer maps to infer the overlay
structure of the system, especially to identify head nodes for
attacks. Using both theoretical model and simulation studies
we showed that the inference attacker can identify and attack
head nodes with a high accuracy, resulting in high chunk
miss ratios. Subsequently, we introduced SWAP, a lightweight
partner swapping scheme as a countermeasure against the
inference attack. SWAP enforces peers to frequently change
their partners to lower the chance of the inference attacker in
identifying head nodes. Extensive simulation studies demon-
strate that SWAP effectively undermines the attack accuracy,

significantly lowering both the maximum and average chunk
miss ratios at the cost of a slight increase in the system’s
signaling overhead.

IX. ACKNOWLEDGEMENTS

This work is supported (in part) by the German Research
Foundation (DFG) within the Collaborative Research Center
SFB 912 - HAEC.

REFERENCES

[1] Y. Gu, N. Zong, Y. Zhang, F. Piccol, and S. Duan, “Survey of p2p
streaming applications,” October 2014. Available: https://tools.ietf.org/
html/draft-ietf-ppsp-survey-09

[2] X. Hei, Y. Liu, and K. Ross, “Inferring network-wide quality in p2p
live streaming systems,” IEEE Journal on Selected Areas in Communi-
cations, vol. 25, no. 9, pp. 1640–1654, December 2007.

[3] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient
multicast using overlays,” IEEE/ACM Transactions on Networking,
vol. 14, pp. 237–248, April 2006.

[4] S. Birrer, D. Lu, F. Bustamante, Y. Qiao, and P. Dinda, “Fatnemo:
Building a resilient multi-source multicast fat-tree,” in Web Content
Caching and Distribution, ser. Lecture Notes in Computer Science, C.-
H. Chi, M. Steen, and C. Wills, Eds. Springer Berlin Heidelberg, 2004,
vol. 3293, pp. 182–196.

[5] M. Brinkmeier, G. Schafer, and T. Strufe, “Optimally dos resistant
p2p topologies for live multimedia streaming,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, no. 6, pp. 831–844, 2009.

[6] M. Fischer, S. Grau, G. Nguyen, and G. Schaefer, “Resilient and
underlay-aware P2P live-streaming,” Computer Networks, vol. 59, pp.
122–136, 2014.

[7] X. Zhang, J. Liu, B. Li, and Y.-S. Yum, “Coolstreaming/donet: a data-
driven overlay network for peer-to-peer live media streaming,” in IEEE
INFOCOM 2005, vol. 3, March 2005, pp. 2102–2111.

[8] PPLive, 2015. Available: http://www.pptv.com
[9] G. Nguyen, M. Fischer, and T. Strufe, “On the resilience of pull-based

p2p streaming systems against dos attacks,” in Stabilization, Safety, and
Security of Distributed Systems, ser. Lecture Notes in Computer Science,
P. Felber and V. Garg, Eds. Springer International Publishing, 2014,
vol. 8756, pp. 33–47.

[10] G. Nguyen, M. Fischer, and T. Strufe, “Ossim: A generic simulation
framework for overlay streaming,” in Summer Computer Simulation
Conference, July 2013.

[11] Y. Zhou, D.-M. Chiu, and J. C. S. Lui, “A simple model for chunk-
scheduling strategies in p2p streaming,” IEEE/ACM Transactions on
Networking, vol. 19, pp. 42–54, February 2011.

[12] E. Zegura, “Gt-itm: Georgia tech internetwork topology models,” 1996.
Available: http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

[13] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin, “A hierarchi-
cal characterization of a live streaming media workload,” in Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment, ser.
IMW ’02. New York, NY, USA: ACM, 2002, pp. 117–130.

[14] S. Xie, B. Li, G. Y. Keung, and X. Zhang, “Coolstreaming: Design,
theory, and practice,” IEEE Transactions on Multimedia, vol. 9, pp.
1661–1671, 2007.

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:06:23 UTC from IEEE Xplore. Restrictions apply.

