
Mitigating Internal, Stealthy DoS Attacks
in Microservice Networks

Amr Osman1(B), Jeannine Born2, and Thorsten Strufe1

1 KIT Karlsruhe, Karlsruhe, Germany
amr.osman@kit.edu

2 TU Dresden, Dresden, Germany

Abstract. The advent of Microservice (MS) architectures has led to
increasingly complex communication patterns between distributed web
applications in the cloud. In order to process an incoming request, each
MS must invoke multiple remote API calls to the MSes that it is con-
nected to along a service dependency graph. This allows attackers to
exploit long-running remote API calls along the performance-critical
path to cause application DoS, and potentially amplify subsequent inter-
MS communication. This paper focuses on mitigating a class of stealthy,
low-volume DDoS attacks that are launched internally from within and
exploit this. The attacker uses the MSes under its control to disguise
then send and resource-heavy requests to target MSes in a way that is
indistinguishable from benign requests. We propose a probabilistic algo-
rithm to proactively identify MSes involved in DDoS, and mitigate the
attack in real-time.

1 Introduction

In today’s inter-connected microservices, a single incoming request could vir-
tually trigger a chain of hundreds of expensive remote API calls between the
involved MSes, forming a complex dependency chain and consuming a lot of
CPU and I/O resources. Even a single slow-performing MS may act as a bot-
tleneck to other MSes along the path that is traversed by inter-MS network
requests. As a consequence, a high end-to-end delay is experienced.

This opens up new attack vectors to overwhelm MSes with expensive requests
in the form of Stealthy, Internal, Low-volume DDoS attacks [6] targeted at
slowly-performing MSes (SILVDDoS). In such attacks, the adversary disguises
resource-consuming requests at low rates using patterns below the detection
thresholds of DDoS countermeasures; making them difficult to detect and mit-
igate as they evade signatures and anomalies observed by traditional Intrusion
detection systems [3]. Also as the attacks originate internally and masquerade
benign traffic, most countermeasures that rely on perimeter defense [4] and auto-
scaling [2] are not effective against them.

This work identifies the MSes that participate in SILVDDoS and mitigates
the attack on a granular level. Our main contributions are the following: (1)
A risk metric to evaluate the likelihood of a MS becoming either a target or

c© Springer Nature Switzerland AG 2021
C. Johnen et al. (Eds.): SSS 2021, LNCS 13046, pp. 500–504, 2021.
https://doi.org/10.1007/978-3-030-91081-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91081-5_37&domain=pdf
https://doi.org/10.1007/978-3-030-91081-5_37


Mitigating Internal, Stealthy DoS Attacks in Microservice Networks 501

a source for a SILVDDoS attack. (2) A probabilistic algorithm to approximate
the identity of the sources SILVDDoS and mitigate it. (3) We mount a stealthy,
SILVDDoS attack and evaluate the effectiveness of our approach using a popular
container-based open-source MS application.

2 Assumptions and Threat Model

We consider a MSes deployment in a container-based cloud environment, e.g.
a docker cluster. Each MS is isolated from other MSes via a separate Linux
container and communicates with other MSes through a network-exposed API
such as REST over HTTPS, or secure RPC. The MSes are exposed to the outside
network, i.e. Internet, via an external load-balancing gateway that receives the
requests from the end users. MSes may be elastically scaled by internal load
balancers. This model is aligned with the vast array of MS deployments and
kubernetes clusters today.

Adversary. The main goals of SILVDDoS is to exhaust the CPU and/or I/O
resources on target MSes such that the network requests traversing the paths
leading to them experience a high end-to-end delay leading to unavailability.
A side-goal is financial DoS as cloud schedulers elastically scale the attacked
MSes and cloud customers are charged for the newly provisioned resources,
e.g. Yo-yo attack [2]. The adversary remotely controls multiple MSes inter-
nally and uses them to initiate its SILVDDoS attack on other target MSes
from within. By controlling a MS, the attacker has access to all its resources
such as mounted volumes (e.g. Databases), network name-spaces, processes,
and user groups. Thus, it also has access to secret keys, and may authenti-
cate itself to the network and other MSes. It may passively observe traffic
and learn about its neighbours and measure their request-response times, or
actively replay legitimate user traffic. It aims to remain stealthy by following
the same paths and patterns that are followed by benign requests [3,5].

3 Mitigating SILVDDoS

Existing DDoS countermeasures assume that attack traffic is distinguishabe,
which is not true in a SILVDDoS [4]. Cluster resource management protects the
infrastructure from overutilization but cannot be used in the presence of SILVD-
DoS where the bottleneck are the MSes themselves [5] [3]. Chaos Engineering [1]
is only used for resilience testing and does not assume malicious intent. Critical-
Path-Analysis unfortunately requires knowledge about the application, low-level
instrumentation and does not assume adversarial presence [7].

Our approach. We propose a risk metric that assesses the susceptibility of
MSes and costly APIs of being used in a SILVDDoS attack based on key
network performance and graph properties, and then later use this risk metric
in an iterative probabilistic estimation algorithm that improves its quality



502 A. Osman et al.

every iteration to identify the attack sources and mitigate the attack. Unlike
a greedy Critical-Path-Analysis (CPA), our algorithm also considers cases
when the adversary uses MSes that may not lie on the critical path to mount
the attack.

we formulate a risk metric that is computed for each API endpoint a for each
MS m to determine DDoS sinks as follows:

<

hm,a =
w1(1 − T ) + w2(1 − R) + w3E + w4L + w5Din + w6A + w0

7
(1)

Similarly, we formulate a DDoS source risk metric for each API end point
per node as:

>

hm,a =
w1(T ) + w2(R) + w3(1 − E) + w4(1 − L) + w5Dout + w6A + w0

7
(2)

where w0..6 ∈ [0, 1] ⊂ Q are selected weights for each metric, and
T,R,E,L,D, A are the arithmetic means in their normalized form in the range
[0, 1] and are calculated for each API a ∈ m for each MS m.

These properties used are: Transfer rate (T), Request rate (R), Error rate
(E), Latency (L), Node degree (D): The number of possible logical connections
each MS has to other MSes in the topology. We distinguish between incom-
ing (Din) and outgoing connections (Dout), Amplification factor (A): The ratio
between the number of external requests sent to other MSes and a given incom-
ing request. The algorithm to mitigate SILVDDoS on a MS s can be summarized
in the following steps:

1. Pick a ∈ s with j + 1th highest
<

hs,a and m ∈ M with i + 1th highest
>

hm,a‘,
where m

a→ s
2. Apply either rate-limiting or container-restart to m with respect to a and s
3. Measure the performance metrics, i.e. health, of s.
4. With probabilies p1 and p2, increment j and i to the next API and microser-

vice respectively.
5. With a probability p3, undo all rate-limiting and container-restart ∀m∀a

6. If the health of s has improved, go to step 1. Otherwise, undo step 2 and
go to step 1.

7. After a health threshold for s or num. of iterations is reached, terminate
and return all (m,a) that were used in step 2.

4 Preliminary Evaluation

We deployed an open-source heterogeneous MSes-based application [8] with the
topology in Fig. 1. We then used FastNetmon to detect high volume DoS, and
Zeek to detect traffic anomalies and low-volume DoS. After that, we initiated
a SILVDDoS attack on ’carts’ from ’frontend’ and ’orders’ following the same
benign user traffic paths. (See Eq. 1 and 2). Neither FastNetmon nor zeek with



Mitigating Internal, Stealthy DoS Attacks in Microservice Networks 503

Fig. 1. Sockshop MSes topology

the latest up to date rules were able to detect SILVDDoS and zero alarms were
triggered, confirming the stealthiness of our attack.

We then evaluate two main questions: (1) How does our risk-based placement
of countermeasures compare to critical-path-analysis or a random placement?
(2) What is the impact of our approach on benign user traffic?

Quality of risk-based selection. We compared the risk-based application
of rate-limiting compared to a random placement approach that, based on
majority-occurance, rate-limits requests from ’orders’ to ’user’. Second, we
performed a Critical path analysis with the sink as a root node and applied
the rate limiters to the MSes that lie on that critical path. CPA rate-limits
requests from ’orders’ to ’user’ and from ’orders’ to ’carts’. The output can
be see in Fig. 2a.

Fig. 2. Latency measurements. Subfig. (a) shows the median response time of ’carts’
(under attack). Subfig. (b) shows the median response times experienced by endusers
at the frontend. Each experiment was evaluated with a confidence level of 80%

We observe that random 1 does not lead to a performance restoration. The
sources of the DoS were not correctly identified and restricted. CPA however,
correctly identified and rate-limited only one of the sources, namely, ’orders’. It



504 A. Osman et al.

also rate-limited requests from ’orders’ to ’user’ which lies on the critical path.
That effectively reduced the concurrency level from 2 to 1, and explains why the
sink has a slightly lower latency compared to our risk-based selection mechanism.
So, while CPA appears to be a better strategy than risk-based selection, it in fact
also excessively limits benign user traffic. With reference to Fig. 2b, we observed
that the benign user traffic latency was increased to 38.4 ms which is higher than
both: the benign setting and the risk-based application of countermeasures.

Impact on benign users. To measure the impact of the risk-based application
of rate-limiting on the perceived performance by the end users, we measure
the HTTP request rate to the ’frontend’. The output is in Fig. 2b.

During DoS, the user experiences 64.1 ms of HTTP response time instead of
18 ms in the case of benign traffic. The risk-based application of rate-limiting
improved the response time and brought the HTTP response time down to 22.7
ms. Hence, the end user temporarily experiences a 26.11 % performance penalty
when the risk-based application of rate-limiting is done, instead of a 256.11%
performance penalty.

Discussion. Our approach mitigates the attack, but temporarily rate-limits
some existing benign traffic, until the sources of the attack are identified and
replaced with fresh instances. Unlike a greedy CPA, our approach is able
to correctly identify attacks that may be off the critical path, and requires
neither prior knowledge of the system and application, nor low-level instru-
mentation. In the future, we would like to optimize the algorithm parameter
selection with respect to the properties of multiple MS topologies and com-
pare the effectiveness of different countermeasures other than rate-limiting.

References

1. Blohowiak, A., Basiri, A., Hochstein, L., Rosenthal, C.: A platform for automating
chaos experiments. In: IEEE ISSREW (October 2016)

2. Bremler-Barr, A., Brosh, E., Sides, M.: DDoS attack on cloud auto-scaling mecha-
nisms. In: IEEE INFOCOM (May 2017)

3. Ficco, M., Rak, M.: Stealthy denial of service strategy in cloud computing. IEEE
TCC 3(1), 80–94 (2015)

4. Garcia, V.F., et al.: DeMONS: a DDoS mitigation NFV solution. In: IEEE AINA
(May 2018)

5. Li, Z., Jin, H., Zou, D., Yuan, B.: Exploring new opportunities to defeat low-rate
DDoS attack in container-based cloud environment. IEEE TPDS 31(3), 695–706
(2020)

6. Payne, B., Behrens, S.: Starting the avalanche: application ddos in microser-
vice architectures (July 2017). https://netflixtechblog.com/starting-the-avalanche-
640e69b14a06

7. Qiu, H., et al.: FIRM: An intelligent fine-grained resource management framework
for slo-oriented microservices. In: USENIX OSDI 20, pp. 805–825 (November 2020)

8. Weaveworks: Microservice sockshop (June 2021). https://microservices-demo.
github.io/

https://netflixtechblog.com/starting-the-avalanche-640e69b14a06
https://netflixtechblog.com/starting-the-avalanche-640e69b14a06
https://microservices-demo.github.io/
https://microservices-demo.github.io/

	Mitigating Internal, Stealthy DoS Attacks in Microservice Networks
	1 Introduction
	2 Assumptions and Threat Model
	3 Mitigating SILVDDoS
	4 Preliminary Evaluation
	References




