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Abstract—Responding to network security incidents requires
interference with ongoing attacks to restore the security of
services running on production systems. This approach pre-
vents damage, but drastically impedes the collection of threat
intelligence and the analysis of vulnerabilities, exploits, and
attack strategies. We propose the live confinement of suspicious
microservices into a sandbox network that allows to monitor and
analyze ongoing attacks under quarantine and that retains an im-
age of the vulnerable and open production network. A successful
sandboxing requires that it happens completely transparent to
and cannot be detected by an attacker. Therefore, we introduce
a novel metric to measure the Quality of Deception (QoD) and
use it to evaluate three proposed network deception mechanisms.
Our evaluation results indicate that in our evaluation scenario
in best case, an optimal QoD is achieved. In worst case, only a
small downtime of approx. 3s per microservice (MS) occurs and
thus a momentary drop in QoD to 70.26% before it converges
back to optimum as the quarantined services are restored.

Index Terms—Network Deception, Decoy Networks, Network
Security, Live Network Sandboxing, Honeypots, Honeynets.

I. INTRODUCTION

As cyber attacks continue to evolve in their sophistication
and stealthiness, and evasion techniques, traditional counter-
measures, e.g., honeypots and Intrusion Detection Systems
(IDS), have become no longer sufficient [1]. Many IDS rely on
well-known signatures, and behaviors [2]. Thus, these systems
cannot detect unknown and stealthy attacks as well as internal
adversaries performing lateral movement, i.e., who leverage
internal services to pivot through the network and obtain
unauthorized access to other services.

Current honeypots can be easily fingerprinted according
to protocol signatures, i.e., header fields such as user agent
strings, fake credentials, enclosed fake data, as well as their
pre-programmed dummy behavior [3], [4]. Additionally, Key
Performance Indicators (KPIs) such as system load and net-
work throughput indirectly translate to its importance from an
adversarial standpoint, and could alarm the adversary about a
honeypot presence. Advanced Persistent Threats (APTs) that
attack multiple services and systems over longer time spans
therefore pose a challenge to traditional honeypots.

This work takes a novel approach to tackle the deception
problem. Our approach uses the live network as deception
network, and combines the state of the art in Software
Defined Networking (SDN), and live cloning of microservices
via check-pointing and restore (C/R) to confine adversarial

network presence to its own network micro-segment that
we coin “Sandnet” without endangering the live production
network. In particular, we make the following contributions:
(1) the design and concept of Sandnet’s architecture, (2)
the implementation and evaluation of three new strategies to
perform live network deception: actively, reactively and pro-
actively, (3) a metric that we coin the Quality of Deception
(QoD) to quantify the effectiveness of network deception
given various KPIs that could be observed by the adversary
to distinguish whether it has been confined, (4) a thorough
investigation of the feasibility and QoD of Sandnet using
different microservices (MSes) as macro-benchmarks.

The remainder of this paper is structured as follows: Section
II defines our assumptions, system architecture and adversary
model. Next, Section III describes our methodology and three
proposed strategies for live cloning and network deception
along with the QoD metric. Section IV describes our evalua-
tion. Section V reviews the related work. Finally, we conclude
our work in Section VI.

II. SANDNET’S CONCEPT

A. System design

Our system design is shown in Figure 1. It is designed
to protect a network which is under the control of one
administrative domain. We refer to this as the Production
Network (PN). Within the PN, a number of interconnected
MSes exist. We assume this topology is connected on layer 2
through a highly-available SDN switch mesh. For simplicity,
we represent this as only one switch in the PN and the
Sandbox Network (SN) respectively. When the IDS detects
an intrusion and/or a Suspicious Container (SC), it will
notify the controller. The controller will then sandbox network
connections from and to the SC.

We assume a deployment of applications following the
microservices pattern, where the overall application is decom-
posed into container-based uni-purpose units which commu-
nicate over a network-based API such as Remote Procedure
Calls (RPC) or other TCP/IP based protocols such as HTTP
Representational State Transfer (REST). A single process is
confined using a single Linux container (i.e. Kernel-level
isolation between processes). Contrary to Virtual Machines
(VMs; i.e. Hypervisor-level isolation), containers enjoy a
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Figure 1. Live network deception concept

lower resource footprint [5], and usually contain less state.
By relying on the MSes model, we can reap these benefits
and additionally apply our network sandboxing mechanism to
a finer level of granularity on the service-level instead of the
VM-level.

Our key objective is to mirror the PN into an isolated
solitary confinement network, i.e., SN, and re-route internal
and external connections involving the SC to the SN with-
out disrupting IP reachability and existing stateful Layer 4
connections such as TCP. This entails that the adversary is
completely isolated from the PN and may only cause damage
within the boundaries of the SN.

B. Adversary model

We limit the threat model to a single “pivot” adversary. That
is an external adversary who becomes internal by compromis-
ing a MS with the intent to explore the network seeking to
infect or control other MSes. It is capable of scanning the
network, conducting reconnaissance, performing traffic anal-
ysis to fingerprint or counter the network sandbox, actively
crafting malicious packets to forged network destinations, and
connecting to containers within its reach as well as leverage
remote exploits in them. The adversary is stealthy and aims
to remain undetected. Hence, it behaves like the MS it attacks
which allows it to evade internal firewalls by masquerading
as a benign container.

We consider the following scenarios out of scope and leave
them for future work. First, we assume that the adversary
cannot break out of the container-sandbox and we rely on the
security model followed by Linux containers. Second, we do
not consider Denial of Service attacks on Sandnet itself where
the adversary can trigger multiple concurrent cloning pipelines
leading to performance degradation, or resource exhaustion.
Third, we do not consider adversaries with multiple entry
points to the PN, nor the presence of multiple adversaries
at the same time.

III. LIVE CLONING AND NETWORK DECEPTION

When a container on the PN is suspected as malicious, a
fresh clone of the malicious container is spawned from a clean
state, and all benign connections are redirected to it. After that,
we weaponize our network sandboxing methodology in order

to clone other containers within reach of the SC to SN and
then confine the adversary’s connections.

Two key concepts lie at the heart of our approach: A
network-oriented live cloning strategy for containers and a
dynamic network confinement mechanism. Both must operate
within the framework of a deception life cycle. This section
highlights the aforementioned three aspects of our methodol-
ogy then introduces our QoD metric.

A. Deception life cycle

Sandnet relies on a 3-phase live deception life cycle: An
initiation phase, an expansion phase, and a shrinking phase.
The first defines when SN is created. The second defines how
the SN grows as the adversary expands its reach or presence.
The third defines if the cloned containers could be put in a
sleeping state, or removed from the SN and when. This work
focuses on the initiation and the expansion phases only and
leaves shrinking for future work.

B. Cloning strategy

To employ Sandnet, we introduce and distinguish between
three main live-cloning strategies:

• Active cloning (AC): A hot clone corresponding to
each container within the PN is pre-spawned in the
SN, regardless of the semantics of its connection to
the adversary. When deception is due, no cloning is
necessary. Only re-routing traffic through the sandboxed
clone is.

• Reactive cloning (RC): Upon first contact with the SC,
each benign container is cloned on-demand to the SN
and then network confinement is applied by redirecting
the adversary’s traffic to the clone(s).

• Proactive cloning (PC): In this mode, we leverage ex-
isting historical data about recurring network flows using
SDN so as to pre-clone carefully selected containers in
the form of hot spares beforehand. This is a hybrid
approach between AC and RC. As a fall-back in case
of false negatives, RC cloning is used.

For PC, we use a heuristic function that considers the con-
tainer size, the bytes transmitted and received within a discrete
time window, and the duration of network flows to pre-clone
active or highly interactive containers, and their k nearest
neighbors. More advanced heuristics are left for our future
work.

The cloning process achieves persistence across three di-
mensions: The in-memory state, the local FS state, and the
network state. It is described in Algorithm1. We preserve the
in-memory state by check-pointing the memory, and state of
the process tree to disk using CRIU in user space1 (L12-
14) and to restore the state on the cloned counterpart (L22-
23). The local FS state is preserved by explicitly getting the
difference of the file system compared to the original image
and CoW layers underneath, and then copying these files over
to the container clone (L8-11). We also differentially copy

1http://criu.org
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the externally mounted volumes as necessary (L4-7). Finally,
to preserve the network state, we leverage the docker
inspect command to get the container’s network identifiers
such as IP, MAC addresses, as well as the networks it is
attached to (L3) then using the same exact configuration when
creating the container clone on the Sandnet (L17).

Algorithm 1 Live container cloning
Input: Container to be cloned C
Output: Cloned container C′

Constants:
snIP , volumesPath, changedF ilesPath, checkPointsPath

1. begin
2. .Get the container conf using ‘docker inspect‘
3. var config = getContainerConfigOnPN(C)
4. for all volume ∈ config
5. .Copy volume using ‘rsync‘
6. deltaCopy(volume, snIP , volumesPath, C)
7. end for
8. .File changes using ‘docker diff‘
9. for all file ∈ getChangedFiles(C)

10. deltaCopy(file, snIP, changedF ilesPath, C)
11. end for
12. .Checkpoint process tree using ‘CRIU‘ and ‘docker checkpoint‘
13. var checkpoint = checkpointPtree(C)
14. deltaCopy(checkpoint, snIP, checkPointsPath, C)
15.
16. .Honor container conf using ‘docker create‘
17. C′ = createContainerOnSNFromConfig(config)
18. .Move changed files into the container root FS
19. for all file ∈ getFilesInChangedFilesPath(C)
20. deltaCopyHostToContainer(file, C′)
21. end for
22. . Start container using ‘docker start –checkpoint‘
23. C′ = startContainerFromCheckpoint(C′, checkpoint)
24. end

C. Network confinement mechanism

We identify two network confinement modes:
• Atomic confinement: Confinement of connections to

sandboxed clones is on an all-or-nothing basis. Connec-
tions are not re-routed unless all clones are in a ready
state. This mode is less likely to incur packet loss or
connectivity degradation because re-routing to the clones
only happens once all the clones are ready. However, it
leaves the adversary potentially longer on its attacked
containers.

• In-process confinement: Re-routing occurs iteratively as
clones are made ready in the sandbox. One issue with
this mode is the fragile deception surface during the
transitional states. While the adversary’s network flows
are re-routed as soon as as possible, packet loss, and
network throughput degradation are likely due to the
temporary absence of dependent containers in the SN.

We chose atomic confinement in favor of a hypothetically
higher QoD. Our network confinement methodology can be
seen in Figure 2. The packet matching happens on the PN’s
hosts and their attached OpenVswitch (OVS) instances. The
routes between the PN and the SN consist of appropriate rules
to allow for packets to traverse the two broadcast domains, and
for the containers to reach each others.

The semantics of confinement are as follows: packets
egressing the SC are redirected to the SN whose OVS instance
in turn delivers packets to the corresponding container clones.
Broadcast packets (e.g. ARP requests) and unicast packets to
the SC are not delivered to it but rather its substitute fresh
clone on PN if they originate from containers within the PN
because the SC is now virtually confined to the SN. Therefore,
any packets from the SN to the PN are also only delivered to
the SC to maintain isolation.

We also mirror network traffic (i.e. workload) within the PN
to the clones so that CPU / IO changes are not distinguishable
to the adversary. We distinguish between two kinds of traffic:
external traffic and internal traffic. The external traffic is due
to external clients (e.g. on the Internet) consuming the MSes
on the PN. This causes a chain of subsequent internal requests
between the MSes. Internal traffic could originate between
the MSes without the need to serve an external request. For
example, using timely tasks or cron jobs like health checks.

The internal traffic is implicitly mirrored due to cloning.
External ingress traffic is mirrored by the edge switches to
both the PN and the SN. The corresponding egress responses
from the SN are then blocked from reaching the external
network so as not to pollute the benign responses from the
PN to the benign external clients. Responses from the PN
to the adversary’s external host are also blocked, in favor of
responses from the SN to maintain deception.

Start
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Figure 2. Packet confinement (We assume that containers are placed in the
container_cidr_prefix network)
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D. Quality of deception

To successfully deceive an adversary, Sandnet must be able
to minimize the changes in KPIs observable to an attacker with
a pre-image of the normal operation of the network. Hence,
we introduce our deception metric which we coin the Quality
of Deception (QoD).

We denote a sequence of KPI measurements of length n
as:

KPI = [v1, ...., vn] (1)

We then define the image of KPI as the tuple:
I = (f1(KPI), ..., fm(KPI)) (2)

where I consists of m unique features computed as a function
of KPI , e.g, the statistical variance or degree distribution
of the network. In Sandnet, we choose I = (µ, σ) where µ
and σ represent the mean and the standard deviation of KPI
respectively. Three images are defined in Sandnet:

• Expected image (Ie): represents the attacker’s blind ex-
pectation of a network’s behavior. Past studies can be
used to formulate Ie.

• Calculated image (Ic): is calculated by the attacker over
a limited time interval when it successfully pivots into
the network.

• Observed image (Io): is the cumulative image observed
by the attacker throughout its presence on PN and after
confinement to SN.

The adversary’s educated pre-image of the network is there-
fore: Ip = g(Ie, Ic) = (p1, ..., pm) (3)

where g(x, y) is a function of x and y. We choose g(x, y) =
median(x, y) such that Ip = (µe+µc

2 , σe+σc

2 ) where Ie =
(µe, σe) and Ic = (µc, σc). The adversary can therefore use
Ic to correct its expected image.

Let Io = (o1, ..., om). Then, from (3):

MAX = (max(p1, o1), ...,max(pm, om))

MIN = (min(p1, o1), ...,min(pm, om))
(4)

The normalized value of a feature xi ∈ I is therefore:

norm(xi) =
xi −mini

maxi −mini
, where : (5)

i ∈ [1, ...,m] ∧mini ∈MIN ∧maxi ∈MAX

We normalize Ip and Io to
∼
Ip and

∼
Io in [0− 1] using:

∼
Ip = (norm(p1), ..., norm(pm))
∼
Io = (norm(o1), ..., norm(om))

(6)

For optimal deception, the attacker should not observe a
difference between

∼
Ip and

∼
Io. We represent this difference as:

D = |
∼
Io −

∼
Ip| = (d1, ..., dm) (7)

The total change C in the features is therefore:

C =
m

(
∑
i=1

di)/m

Hence, 0 ≤ C ≤ 1. C is maximum when there are
significant differences between

∼
Ip and

∼
Io. Therefore, given

k KPIs, we formulate the QoD as:

QoD = 1− (
k∑
i=1

Ci)/k (8)

where Ci is the total change in features for KPIi. As the total
changes across KPIs increase, the QoD decreases. Therefore,
the attacker can infer that it got sandboxed when QoD is
below a certain threshold t ∈ R.

We evaluate Sandnet’s QoD according to KPIs related
to both: the local container’s state, as well as the net-
work I/O traversing the container from SC’s perspec-
tive. We formulate Sandnet’s measured KPIs as the tuple:
(RL2, RL3, T, L,D, FS) where RL2 is the set of reachable
MAC addresses from the SC, RL3 is the set of reachable IP
addresses, T is the network throughput between the adver-
sary’s container and one ore more other containers, L is the
network latency to another container, D is the experienced
down time, and FS is a recursive file system diff between
the original container and the clone.

It is worth mentioning that FS entails a lot of local
information about the container that is stored in the /proc
file system, e.g., the list of running processes, list of file
descriptors of processes, memory and CPU utilization, the
routing table, the ARP table, as well as the list of network
interfaces along with their TX and RX counters. We exclude
the memory maps and pagefile maps from our calculation, as
these are usually subject to randomization (e.g. ASLR) as a
part of memory protection.

IV. EVALUATION

A. Evaluation setup

We conducted our evaluations on a testbed consisting of
3 Intel NUCs representing the PN, the SN and the external
network. Each NUC has 8GB of RAM, a 256GB SSD, a
Core i5-7260U processor with two hyper-threaded cores and
a 1Gbps network connection between them. A second 1 Gbps
NIC is used for the management, and control traffic related
to the initiation of live network deception. The NUCs were
running Linux kernel v4.9.0, Debian Linux v8, docker v17.06,
Openvswitch v2.3.2 with an appropriate docker network plug-
in, and version 3.10 of the CRIU software.

B. Microservice workload under test

The MS application under test consists of a 2x replicated
3-layer container-based deployment which is comprised of
a frontend (FE) web server running the nginx caching web
server, a backend server (BE) performing the business logic
using the flask web framework running as a WSGI application
within Gunicorn which in turn persists its data to a database
(DB) tier represented by a redis key-value store. The versions
of the docker images used were as follows: redis version
5.0, python-2.7-slim version 19.6 for the flask application
container, and nginx version 1.15.5-alpine. All six containers
are connected via openvswitch as illustrated in Figure 1
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Figure 3. QoD relative to KPIs

In all our experiments we emulated adversarial presence on
the FE MS and employed our three aforementioned cloning
strategies along with the network confinement mechanism
accordingly. The flow of the experiment runs in two phases:
First, the FE (frontend 1 or FE1) internally accesses the BE
to serve incoming end user requests, which in turn generates a
R/W load on the DB to retrieve and/or modify data. After 10s,
the IDS detects the adversarial incident and triggers the live
network deception routine. At the 30s mark, the adversarial FE
changes its behavior to further access the BE of the second
replica group (backend 2 or BE1). This generates a similar
workload for the second replica group.

We computed the QoD w.r.t. the compromised FE, and the
benign FE of the second replica group (frontend 2 or FE2)
was used as a baseline to compare the deception quality of
the cloned containers on SN to their non-cloned counterparts
which reside on the PN.

C. Quality of deception

We used the tools httping, and fasthttploader to measure
the HTTP latency as Round Trip Time (RTT), and the HTTP
throughput accordingly. We then inferred the total down time
as the time at which the MS under test is unresponsive
and packet loss occurs. To compute the changes in the FS
before and after cloning, we used the diff tool to recursively
compare the FS trees. The network reachability from the SC
were measured using arp− scan and nmap accordingly.

Figure 3 shows the impact of the three live cloning strate-
gies we proposed on the HTTP RTT and the throughput (y-
axis) through the experiment’s lifetime (x-axis). RC is drawn
in blue, whereas AC & PC are drawn in red and green. Overall,
AC outperforms PC and RC, and PC shows a gain over RC.
This can be reflected in their corresponding QoD accordingly.

At the 10s mark, when the IDS has signaled the intrusion,
a small latency spike (in green) with the magnitude of 1s can
be observed for both AC and RC. Shortly after, a 2s spike
is observed for only RC. This is because the PC strategy has
marked the DB as eligible for pre-cloning and clones both
DB1 and its dependent BE1 concurrently. However, RC first
clones BE1, and serially clones DB1 when the first HTTP
request is made to it, which causes a significant latency
disruption for a longer duration.

As our approach favors atomic network confinement, the
adversary’s connections are re-routed to the SN only when
the corresponding clones are ready. For this reason, only ~1s
of latency overhead is experienced for PC which is roughly
the time for CRIU to freeze the memory state of BE1 and DB1
to dump it to disk. It does not include the other overheads due
to copying and restoring on the SN.

At t=30s, when the adversary contacts BE2, a much larger
downtime is experienced for PC and RC. At this time, the
adversary’s connections have been confined to only the SN
and may no longer cross the isolation boundary between the
SN and the PN. As the newly contacted containers BE2 and
DB2 have not yet been cloned, the adversary experiences
the cloning time in its totality. Namely, checkpoint creation,
followed by a container FS file diff creation, copying, and
restoration.

A similar observation can be drawn about the HTTP
throughput. When cloning is imminent, a momentary decrease
in throughput due to downtime occurs. This is followed by a
quick rise of throughput over the norm due to retransmissions.
The remaining KPIs; namely, the link-layer and network-layer
reachability, and the FS difference varied in the transient state
of RC and PC (i.e. while a container was being cloned), but
stabilized after completion. They were not plotted individually
due to space limitations.

The bottom plot of Figure 3 shows how the aforementioned
KPIs affects the QoD. AC achieves 100% QoD, whereas
PC on average achieves a higher QoD than RC due to its
lower downtime and the concurrent pre-cloning of strongly
connected containers. During downtime, the QoD is zero as
the total difference between the normalized adversary’s pre-
image of the KPIs and their actual values is at its maximum
value: one.

D. Breakdown of the live cloning workflow

In this subsection we attempt to answer the question:
“which step of the live cloning workflow is the most time
consuming?”. Table I sheds light on the mean time costs for
each step involved when cloning both The BE and the DB.
The majority of the time was spent on restoring the memory
checkpoint on the cloned container, as well as on updating
the changed files onto the cloned container. As the BE is
significantly more complex and larger in image size than the
DB, it results in a larger memory snapshot which is more
costly to copy over the network. These results also align with
past work [6].
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Table I
DETAILED TIME COSTS OF LIVE CLONING

Step Backend Database
Checkpoint creation 0.5824s 0.4759s
FS diff create & copy 0.5492s 0.0168s
Checkpoint copy 2.2015s 0.7425s
FS diff application 0.7163s 0.7865s
Checkpoint restoration 0.8494s 0.7653s

E. Resource overhead

Achieving a higher QoD comes at the cost of resource
duplication due to cloning and traffic mirroring. In this section,
we estimate the resources overhead in terms of time com-
plexity due to the three cloning strategies as well as the two
network confinement mechanisms.

1) Traffic mirroring: To keep the state between the PN
and the SN synchronized, and keep the containers’ workload
similar, traffic mirroring between the PN and the SN is
required. This adds an extra O(f) of overhead, where f is
number of forwarded packets at the edge switch.

2) Network confinement: Due to network confinement
(Figure 2), an extra packet processing overhead of O(p) is
endured, where p is the number of forwarded packets at the
OVS instance of the PN. This is due to the extra SDN header
matching logic. Additionally, in case of atomic confinement, a
time overhead of O(1) is added due to rerouting the packets
once cloning is complete. For in-process confinement, this
overhead is calculated as O(k), where k is the number of
cloned containers. After cloning each container, the corre-
sponding flows are redirected to it.

3) Live cloning: For AC, extra O(n) , n =
number of containers, of computation, network, and
storage resources are necessary because all containers on
the PN are pre-cloned. PC, and RC require O(n − k1) and
O(n − k2) extra resources respectively, where k1 is the
number of containers which were not pre-cloned according
to the chosen heuristic, and k2 is the number of containers
which were not contacted by the SC. We further note
that k1 ≤ k2 as PC might elect containers for pre-cloning
irrespective of them being contacted by SC.

4) Total: We quantify the total overhead as the sum of the
above. Hence:
Ototal = Ocloning +Otrafficmirr. +Onet conf. (9)
= O(n− c) +O(f) +O(p) +O(1) , 0 ≤ c ≤ n

where c is the number of containers which were not cloned.
The overhead due to deploying Sandnet is linear in the number
of external ingress packets, the number of internal packets
within the PN, and the number of cloned containers. Through
future work, we plan to examine and reduce this overhead.

F. Impact on the production network

The impact on containers in the PN can be observed in
Figure 4. Throughout the lifetime of the experiment, the
frontend of the second replica group continues to consume the
backend and the database accordingly. At 30s, a downtime of
roughly 1s can be observed, through which a latency spike and
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Figure 4. Impact of live cloning on the production network

throughput degradation occurs. This downtime is accounted
for due to the memory snapshotting phase of our live cloning
routine using CRIU. During this time, it is necessary to freeze
the memory of the running container, and dump it to disk for
cloning. This effectively freezes the running processes tree
within the container. Hence, we conclude that the impact on
the running MS on the PN is minimal.

G. Discussion

From an attacker’s perspective, the compromised service
appears to reside on the PN. However, in fact it is confined
to the SN. We conclude that an optimal QoD is achievable.
However, this comes at the cost of a significant resource
overhead. In data center and highly-available deployments,
MSes are typically replicated across data centers, availability
zones and hosts to ensure maximum resilience. This can be
capitalized on to reap the benefits of detecting and thwarting
new attacks by deploying Sandnet in AC mode which provides
a constant optimal QoD.

In resource-constrained environments, we provide two al-
ternatives: PC and RC which achieve a reasonable QoD. The
latter incurs a worst-case QoD of 70.26% for a very short
period and a downtime of ~7s, while the former incurs a
worst-case QoD of 77.70% and a downtime of ~3s. Both
quickly reach a 100% QoD after stabilization and recover
once the live deception process is complete. In fact, the ability
of the adversary to distinguish normal degradation in KPIs
from degradation due to deception remains in favor of Sandnet
[7], because KPIs can still be emulated to add noise to the
adversary’s perception. Traffic could also be redirected to
standby honeypots in transition, and critical confidential data
on the SN could be indistinguishably obscured [8].

V. RELATED WORK

In this section, we survey the related work. We classify past
literature into three main directions: traditional honeypots,
network deception, and live cloning and migration.
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A. Traditional honeypots

Traditional honeypots only purvey limited functionalities
to the adversary, are intentionally vulnerable and identifiable
[4]. Moreover, decoys using Virtual Machine Monitor (VMM)
introspection are susceptible to various limitations and are
detectable [9]. Ongoing work deployed multiple honeypots in
a network (Honeynets) [10] and evaluated the combination
of different kinds of honeypots in that context [11]. Hon-
eynets remain fingerprintable, and are limited in the face or
propagating attacks. Therefore, dynamic intelligent honeypot
selection and routing has become a problem of interest.
Systems like HoneyMix [3] and HoneyProxy [12] address
these limitations by re-configuring the network [13] and co-
deploying honeypots with real servers.

B. Network deception

Altering the attacker’s perception of the network is one way
to alleviate the need for topologically correct decoys. This
problem lies at the heart of network deception [14]. Moving
target defense techniques conceal topological information by
transparently changing the network identifiers of the hosts (i.e.
IP addresses). Hence, reconnaissance information gathered
by an adversary become of no value as the attack surface
changes [15]. Other work makes more network properties
indistinguishable to the adversary such as the connectivity
information between the hosts, and the traffic patterns [16].

C. Live migration & cloning

VM live migration algorithms could be modified to create
realistic on-demand decoys which serve as isolated copies
from the originals [17]. However, this approach suffers from
a large turnaround time (several seconds) due to copying
large VM snapshots and connectivity disruptions. Further
improvements to preserve VM network identifiers [18] and
speeding up cloning [19] have been suggested. Recently,
only limited approaches studied the live migration of SDN
topologies [20] and migrating containers [6]. However, this
was neither performed in an adversarial setting nor considered
realistic deceptive measures.

VI. CONCLUSION

This work introduced a deception network - Sandnet -
which sandboxes an internal adversary to a network segment
using SDN and actively clones containerized applications to
its solitary network domain in a microservice deployment.
This allows for a more complete investigation of evolu-
tionary behaviors in network attacks such as APTs. Our
contributions included an implementation of Sandnet, a novel
metric to measure the Quality of Deception (QoD), and a
qualitative evaluation between three introduced strategies for
live deception. Our results show that for the most resource-
consuming strategy, an optimal QoD can be achieved, and for
the least resource-consuming strategy, only a small downtime
of approx. 3s per container was experienced which led to
a worst-case QoD of 70.26%. Our future work is aimed at
optimizing the QoD for multiple co-present adversaries, and

evolving the system to handle complex adversaries such as
colluding entities or adversaries with multiple entry points to
the production network.
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