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Abstract—Container security, especially in the quest for con-
trolled access and secured communication between containers,
has spawned a multitude of implementations, based on various
concepts and design choices. They are characterized by very
different performance properties, which so far have not compre-
hensively been benchmarked nor compared in a fair manner. The
emerging paradigm of moving execution to edge clouds requires
both: efficiency in the light of ephemeral containers and mobility,
and security in the face of resource sharing between various
tenants at hosts of various providers.

In this paper we introduce SeCoNetBench, a modular bench-
marking platform for container network security, and compare
the most prominent frameworks for access control and network
isolation in the container ecosystem. The results demonstrate that
trade-offs have to be made during infrastructure deployment,
and we provide guidelines for designing high-performance secure
container networking platforms in adversarial settings.

Index Terms—Container networking, Network micro-
segmentation, Microservices, VPN, Secure network tunnels,
Packet filters

I. INTRODUCTION

Conventional services where running atop bare-metal, phys-

ical hardware on premise or in co-location data-centers. They

motivated perimeter defense, relying on firewalling internal

network segments from the external Internet, from where

classic adversaries were assumed to attack.

The advent of virtualization, with elastic cost-models for

XaaS (Anything-as-a-service), has changed this scenario dis-

ruptively, as various tenants are now sharing the same physical

hardware. The agile edge cloud scenario complicates this trust

model further, as partial services may now run in hardware of

entirely different providers, chosen by their proximity to the

end-user.

Traditional VM-based virtualization has proven to be too

inefficient and slow for agile edge clouds[1], [2], [3]. We hence

observe a dramatic surge towards microservice virtualization,

decomposing monolithic software into isolated components

that run in their own compartments. Microservice virtualiza-

tion is characterized by finer-graind isolation. By leveraging

kernel name spaces, full OS virtualization is no longer nec-

essary, and containers become much more lightweight, hence

faster to bootstrap[4].

Considering mobile edge clouds, recent studies highlight the

demand for very fast migration and cloning of microservices,

to achieve QoS guarantees and minimal delay penalties in face

of roaming end users [5], [6].

Implementing filtering, to achieve controlled access to spe-

cific services, and isolation, to achieve confidentiality and in-

tegrity of the data exchanged between microservices becomes

highly challenging in these scenarios, and traditional perimeter

defense becomes obsolete.

Early approaches to protect traffic between virtual machines

commonly assume infrequent topology changes, and are de-

signed thinking on the level of hosts, rather than the level

of specific services of various tenants [7], [8]. Several efforts

have been made to draft solutions for high-fidelity network

access control between containers, recently [9]. They follow

various design choices with respect to container connectivity,

confidentiality of the network traffic, and consequently the

filtering and isolation of network flows.

In this paper we are hence set out to discuss security

properties, and to evaluate the performance of different secure

container networking solutions. We dissect the underlying

mechanisms and primitives that are embodied as different

types of packet filters, secure networking protocols, and Linux

interfaces.

We reason about both: their individual, as well as their

cumulative impact on network performance for agile edge

clouds, subject to various synthetic and realistic workloads.

This paper hence makes the following contributions:

1) We design the modular benchmarking framework

SeCoNetBench to assess the performance of secure

container networking solutions.

2) We implement SeCoNetBench on top of Kubernetes, the

state of the art container orchestration platform today.

3) We perform a comprehensive performance analysis of

the secure container networking design space with re-

spect to the aforementioned underlying mechanisms,

using synthetic and realistic microservice workloads.

The rest of this paper is structured as follows. In Section II,

we give a structured overview of the related work. Section III

describes our system and adversary model. Section IV lays

down the architecture for our benchmarking framework. We

later in Section V evaluate our framework with multiple work-

loads and present the results. We finalize with a discussion of
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our results and then summarize our conclusions and existing

open problems in Section VI.

II. RELATED WORK

This section divides the related work into: container net-

working, packet filters, and secure container networking.

A. Container networking

Some of the underlying network primitives used to connect

between containers such as soft switches or Linux bridges

have been benchmarked in isolation. Yet, no comparison nor

investigative study about the bottlenecks and trade-offs was

made. Claassen et. al.[10] evaluated veth, Macvlan and IPvlan

in two different settings: locally and remotely. IPvlan yielded

the best local TCP throughput, whereas Macvlan had the

best local UDP throughput. For remote communication, veth

sustained a better TCP throughput, and Macvlan had a better

UDP throughput. The authors recommended using Macvlan

for both single- and multiple- node deployments as it performs

well on average for both TCP and UDP flows. The authors

confirm our hypothesis that further evaluation is necessary to

measure how these interfaces perform in different container

overlay networks.

Similar experiments have also been conducted under dif-

ferent settings and measured more technologies such as Open

vSwitch (OVS), and SR-IOV. Veth still outperformed OVS and

Linux bridges, and a 50% performance loss was also observed

when containers were run on VMs[11]. Though deploying

process ensembles in the form of nested containers[12] might

yield certain performance benefits at the cost of less isolation.

Moreover, Macvlan was concluded to have lower network

latency and jitter compared to the aforementioned interfaces

and Linux bridges[13].

Docker overlay networks were also benchmarked. Arne

Zismer[14] analyzed the TCP and UDP throughput of three

popular libraries: libnetwork, Flannel and Weave. Overall,

Weave followed by Flannel performed better compared to

Libnetwork, and the CPU was shown to be a limiting factor to

the achievable throughput. In alignment with our hypothesis,

future work regarding the impact of encryption on the overlays

was suggested.

B. Packet filters

The concept of dynamic packet filters[15] and dynamic

firewalls[16] have long existed under different terminologies

but similar semantics. They both address the problem of chang-

ing or optimizing the packet-matching rules and policies at

runtime without the need to restart the firewall, and optimally

without disrupting existing connections. This however requires

some knowledge about the ongoing traffic flows.

Chandramouli[17] provided a preliminary report on the

different technologies which could be used to: isolate virtual

networks of VMs from one another, and to provide network

ACLs between them. However, no evaluation to support the

concluded set of recommendations was made.

Bruijn[18] compared the performance of two packet filters:

iptables and extended Berkley packet filter (eBPF). It was con-

cluded that the filtering rule complexity had negligible impact

on the performance of eBPF, which was the inverse observa-

tion to iptables’ performance. Furthermore, eBPF performed

better when the communicating containers were on the same

host, and iptables was best during cross-host communication.

C. Secure container networking

Nane Kratzke[19] studied the impact of: containerization,

software-defined overlays and encryption on network through-

put. Docker was selected as a containerization solution, and

Weave as an overlay with support for encryption. The impact

on HTTP throughput was then evaluated on a single CPU-core

system. Docker containerization impacted the performance by

10-20%. Weave further lowered the performance by 30% and

up to 70% for larger message sizes of more than 200kB. Weave

encryption was shown to have minor impact on performance

and up to 10% lower throughput for large message sizes. It was

alleged that Weave had such a huge performance impact as its

router daemon was bottlenecked by the single CPU running

the experiments. But, a validation of this claim is left for future

work.

Other secure protocols have also been subjected to basic

micro-benchmarks[20]. It was shown that the Wireguard proto-

col outperforms IPsec, and that OpenVPN came with the most

significant overhead on ping time and network throughput.

D. Summary

To this end, none of the above approaches tackle the

problem at hand in its wholeness. The performance and the se-

curity achieved when providing dynamic network-wide ACLs

between containers is a product of the underlying bridge mech-

anisms, overlay technologies and the selected cryptographic

protocols as well as the ACL enforcement technique itself.

Additionally, the past benchmarks did not consider realistic,

and various types of container workloads. We therefore pro-

ceed by shedding more light onto our fundamental assumptions

and design decisions for SeCoNetBench.

III. SECONETBENCH

Communication between containers could take multiple

forms. It could happen between containers on the same host

machine as well as across multiple hosts and edge clouds.

Therefore regardless of where containers are scheduled, the

communication channels between them should be transparent

to the underlying topology. This section highlights our assump-

tions and sheds light on the adversary model, communication

model as well as the design space of technologies that could

be leveraged to counter it.

A. Communication model

We consider a microservice deployment within a single

network administrative domain such as an edge cloud offered

by a single provider. This deployment consists of different

services which run inside Linux containers, and are spread
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across multiple hosts in the network according to a scheduling

strategy by a logically-centralized-but-physically-decentralized

container orchestrator. Each container has its own unique

MAC and IP addresses, which are used to uniquely identify

it in the network. These containers then communicate using

TCP/IP in order to exchange data bidirectionally. This setting

is aligned with major container orchestration platforms such

as Kubernetes, Mesos and Docker, and offers more clarity, and

scalability compared to other network addressing mechanisms

which could be used such as port mappings.

B. Adversary model

Given the aforementioned deployment, we assume an active

internal attacker who controls one or more containers, and

seeks to have unauthorized network access to other containers

in the same network, or are co-located on the same host. It is

also capable of scanning the network to collect reconnaissance

information. However, we subsume that it cannot break out of

the confines of its container isolation which is provided by the

Linux kernel through side channels or other local exploits.

In addition, we assume the presence of an external active

attacker which is capable of manipulating, dropping, or craft-

ing network traffic between containers that traverses multiple

hosts (Dolev-Yao adversary). It is capable of inspecting the

content of the traffic within its reach, and aims to have

unauthorized access to containers, and the data exchanged

between them. However, it cannot decrypt encrypted traffic

assuming the choice of a secure cipher suite, and that the

respective cryptographic keys are not compromised.

C. System model

Figure 1 highlights multiple variables in the microservice

deployment under test which must be considered by SeCoNet-

Bench.

1) Single-host networking: In order to protect the network

against the internal attacker, strict fire-walling and packet

filtering must be enforced between the communicating co-

hosted containers. Optimally, all traffic must be blocked and

a whitelisting approach should only allow specific pairs of

containers to communicate as necessary. Therefore, two design

decisions lie in question. First, the choice of network interfaces

or bridges to allow containers to communicate (3). Second, the

choice of the packet filter (1).

2) Multi-host networking: As containers communicate

across multiple hosts, one must secure communication against

both: the internal and the external attackers. This implies that

the design space expands further to include the choice of

routing protocols or network tunnels to realize transparent

connectivity (2a), in addition to the choice of encryption

for the dataplane (e.g. through a secure VPN) to ensure the

confidentiality and integrity of the data (2b).

network solution network tunnel

packet filter

network solution

packet filter1

3 2a 2b

containercontainer container container

Figure 1. Secure container networking

IV. FRAMEWORK AND METHODOLOGY

Motivated by the models and constraints in the above

section, we describe SeCoNetBench, which is a benchmarking

framework and a holistic testbed to deploy container workloads

and instrument the configuration of their underlying secure

network communication building blocks under test.

A. Architecture

Container Hosts

Containers

Configuration

Control

Configurator Scheduler

Workload
control

Results
aggregator

send
workload  

results 

Sink

N

PNetwork

Performance
monitor

N: Network Config Agent

P: Packet Filter 

C: Container Daemon 

C

N

C P

Blue: Data Traffic 

Yellow: Control Traffic

Src

Host A Host B

Green: (On) Host A

Purple: (On) Host B

start/stop
workload configure

Block N 
Block P 
Block C

schedule  
container

Figure 2. The SeCoNetBench architecture

Our architecture (see Figure 2) consists of four distinct

layers. The first is the configuration layer that describes which

building blocks to configure, the number of containers, the

workloads to run, and the packet filter rules. The Control layer

is responsible for configuring, monitoring and executing the

workloads. The Configurator applies the network configuration

by communicating with the Network Config Agent, which is

located on the container hosts. The Scheduler performs the

scheduling of the containers on the hosts and the Config-

uratior conjunctively creates the packet filter rules for each

container. An additional component of the Control layer is the
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performance monitor which collects the performance metrics

of the container hosts such as CPU, Memory and Network

I/O utilization. The remaining components of this layer are the

workload control and the result aggregator, who are responsi-

ble for starting the workloads on the containers and receiving

the workload results. Layer three represents the container hosts

and the intermediate network topology connecting them. The

Containers run on top of the hosts in their own logical network

that is abstracted from the physical network on which the hosts

are connected. This can be seen in layer four of our software

stack.

B. Benchmarking workflow

The benchmark workflow (see Figure 3) starts with the

Configurator applying the configuration to the container hosts.

In this step, the network solutions, packet filters, and network

tunnels are set up. The Scheduler then spawns the required

containers on the hosts. After the containers are running

the workload control instructs the containers to run the first

workload. The workload control waits for all containers to

conclude and transmit their workload results to the results

aggregator before starting the next workload. This process is

repeated until all workloads have been executed. Then, the

Scheduler checks if there are more container and packet filter

rule configurations to run. When the Scheduler is finished, the

Configurator configures the next setup, until all of them are

complete.

run workload

setup network
solutions and

network
tunnels

setup
containers and

configure
packet filter

Start

Yes

No More workloads?

Yes

No More configs?

Yes

No More setups?End

Figure 3. Benchmarking workflow

C. Single-host networking

Containers on the same host are usually connected via

virtual interfaces (veth) which act as a data pipe, transporting

packets from one endpoint to another. The container gets

one endpoint and the other one is connected to the network

solution. Network solutions are responsible for forwarding

packets between multiple endpoints. We select bridge, Open

vSwitch (OVS), Berkley packet filter (BPF) and routing as

candidate network solutions. We additionally identify three

popular concepts for packet filtering: iptables, Open vSwitch,

and Berkley packet filter.

iptables[21] works on a rule-set that is organized as tables,

which organize the rules in data structures called chains. Each

table has multiple entry points that correspond to specific

stages in the Linux network data flow. The entry points lead to

specific chains that are executed when a packet enters through

them. Inside a chain, the rules are evaluated in sequential

order. Rules consist of a predicate and an action. When a

packet matches the predicate the action of the rule is executed.

Actions can be to jump to another chain, to accept, drop, or

to modify the packet. If a packet reaches the end of a chain

the default policy of the chain, which is either accept or deny,

is executed.

Open vSwitch[22] uses OpenFlow rules to determine the

next hop of a packet or filter it. The classification is realized by

having a set of hash tables which match packets by a specific

hash tuple, e.g., the source address plus the port number. A

table stores all rules that match on the same hash tuple. Packets

traverse all hash tables until a match is found. Due to how

lengthy this approach is, OVS only classifies the first packet

of a flow and then caches the decision in a hash table that

matches consecutive packets to their flow.

Berkley packet filter[23] uses a directed acyclic flow graph

(DAG) as a filter model. Each node of the graph is a match

on a part of the packet which determines the next node in

the graph. The evaluation is concluded when a leave node

is reached. The benefit of this model is that the decision of

each check is implicitly stored by the position of the packet in

the graph, making redundant checks of the same protocol field

unnecessary. The DAG is compiled to byte code by translating

each node to a comparison plus a conditional jump to the next

node. This code is then run in its special-purpose VM within

the Linux kernel.

We expect that OVS will perform best as found in [24].

We also expect to see a spike in latency for the first packet

forwarded by OVS due to its classification process. The results

from [18] and [25] suggest that BPF will perform better than

iptables when it comes to large rule sets on on the same host.

D. Multi-host networking

Multi-host networking expends on top of the single-host net-

working and adds the connections between multiple container

hosts. We consider network tunnels and VPNs to separate the

container network from the host topology.

Network tunnels encapsulate network packets inside a tun-

neling protocol. The tunnel decouples the encapsulated traffic

from the underlying network. This allows bridging networks

that do not support certain types of connectivity or protocols. A

Further benefit is that operators can establish logical networks

that hide the underlying topology to its endpoints. Del Picolo

et. al. [26] gave an overview of the network tunnels which

could be used for data center networks.

We pick IP-in-IP (IPIP), Generic Routing Encapsulation

(GRE), and Virtual eXtensible Local Area Network (VXLAN)

for the network tunnels. IPIP encapsulates IP packets by

adding an additional IP header with adds 20 bytes. GRE

has a variable size header that ranges from 4 to 16 bytes

overhead and is inserted between the IP header and the

payload. VXLAN transports Ethernet frames by encapsulating

them with UDP (8 bytes) and its own header of 8 bytes.

Because of the outer IP header (20 bytes) and Ethernet header

(14 bytes), its total overhead is 50 bytes.

Virtual private networks (VPNs) are network tunnels that

use cryptographic measures to ensure confidentiality and in-
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tegrity of its encapsulated traffic. The confidentiality is pre-

served by encrypting the traffic and integrity by adding a

Message authentication code (MAC) to the packets.

We pick IPsec, Wireguard (wg), OpenVPN (OVPN), and

Tinc as suitable VPNs. IPsec uses the Encapsulating Security

Payload (ESP) protocol for encapsulation. ESP adds a header

(8 bytes) behind the IP header and a trailer (18 - 33 bytes) on

top of the payload. Wireguard, OVPN, and Tinc all use UDP

(8 bytes) as the outer carry-protocol and add their own header

and trailer to the payload. Wireguard adds a total of 40 to 55

bytes, OVPN adds 48 to 63 bytes, and Tinc adds 28 to 43

bytes of overhead, depending on the length of the plaintext

padding.

We expect the VPNs to perform worse than the network

tunnels because they require additional time to process each

packet and due to their header overhead. The results of

Donnerfeld et. al. [20] suggest that IPsec and Wireguard

will perform similar to each other while OpenVPN will be

significantly slower.

V. EVALUATION

This section discusses our evaluation. First, we describe

our setup and testbed specifications. Then, we explain our

workloads and lay down our results for single- and multi-host

networking respectively.

A. Setup

We implemented SeCoNetBench using a cluster of virtual

machines (VMs) as container hosts. Each VM had four cores

and 10 GB of RAM running Debian 8 as OS with Kernel 4.9.

We used a single hypervisor with 40 Intel Xeon E5-2630 v4

CPUs (2.2 GHz) and 500 GB of RAM. Kubernetes (1.7.5)

orchestrates the Docker (18.06.1-ce) containers and allows the

deployment of network solutions and packet filters via CNI

plugins. We choose Canal (Calico v2.6.9 & Flannel v0.1),

Cilium (v1.2.0-rc1), Weave (v2.3.0), and Contiv (v1.2.1) as

plugins to have iptables, BPF, and OVS as packet filters. We

choose OpenVPN (2.3.4), Tinc (1.0.24), Strongswan (5.2.1),

Wireguard (0.0.20181018) as VPNs and iproute2 (4.9.0) to

configure network tunnels. In order to protect the integrity and

confidentiality of the network flows, we use AES-256-GCM-

128 (IPsec & Tinc), AES-256-CBC-HMAC-SHA1 (Open-

VPN), and ChaCha20-Poly1305 (Wireguard) as cipher suites.

We generate our workloads using iputils-ping (s20161105),

Uperf (1.0-dev), and D-ITG (2.8.1). Dstat (0.7.2-4) was also

used to measure the performance of the VMs

B. Workloads

We used six different workloads to evaluate our benchmark

and the technologies under test:

1) Latency Basic: A simple ping (ICMP) is used to measure

the round-trip time between the two containers.

2) Throughput Basic: Using Uperf we saturate the link to

measure the effective throughput between the containers.

We used 64, 653, and 1370 bytes of payload to study

the effect of the payload size on the throughput.

3) Bursty Traffic: We use D-ITG to emit small 1-second

bursts of UDP traffic. Each burst had a throughput of

500 Kbps.

4) 100-TCP-Connections: Here, D-ITG creates 100 simul-

taneous TCP connections between the container pairs

with a throughput of about 500 Kbps per connection.

5) Quake 3: The video game Quake 3 requires low latency

UDP traffic for its players to have an enjoyable experi-

ence. Lang et. al. [27] investigated the traffic character-

istics of Quake 3 and reported random distributions that

can be used to synthesize the traffic. We use D-ITG to

generate 4 flows of Quake 3 traffic per container pair,

simulating a four-player game.

6) Video Streaming: Video on demand platforms like

YouTube and Netflix make up a large share of today’s

Internet traffic [28]. In order to synthesize video stream-

ing traffic, we rely on the data reported in [29]. We

draw 10 videos with various lengths and sizes from the

distributions to create corresponding TCP streams with

D-ITG. We calculate the throughput required to watch

the videos in real-time with a payload size of 1370 bytes.

Since the reported video data is from 2009 we scale the

flows to transport 3 GB per hour on average, which is

the estimate of Netflix for HD video streams.

Each workload is used to send network flows from one source

to one corresponding sink container. This allows scaling the

workloads by scheduling more sink-source pairs independent

from the rest of the network. We ran our workloads with 2,

8, and 32 total containers. Each of the workloads was run

multiple times until the result values converged. In order to

avoid packet fragmentation, e.g., in the multi-host networking

scenario, we selected 1370 bytes as the maximum payload

size. The default payload size used was 653 bytes, unless stated

otherwise.
The first two workloads are micro benchmarks designed to

find the minimal latency and the maximum throughput of the

system. The respective following workloads are synthetic and

were designed to stress the packet filter and secure network

tunnels by exhibiting unusual traffic patterns or a high number

of connections. The last two workloads are derived from

realistic traffic scenarios by using random distributions.

C. Single-host networking
We ran the aforementioned workloads to measure the net-

work performance of containers communicating on the same

host. We hereby analyze the impact of secure packet filtering

on the overall performance. We inserted filtering rules that

enforce network isolation between only the communicating

container pairs and follow a whitelisting approach (default

deny). Our results are shown below for a total of 32 containers.
1) Basic workload: In Figure 4a, the latency for the Latency

Basic workload is shown. The red box plots depict the results

with packet filtering and the blue box plots depict the results

without any filtering. Also, we distinguish between iptables

under two different settings: the first (iptables (r)) is when the

traffic between the containers is routed by means of direct
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layer-3 routes in the Linux routing table, and the second

setting (iptables (b)) is when the containers are communicating

directly using a classic Linux bridge. We can observe that

packet filtering has a negligible impact on the latency. We

observed that the first packet of each flow exhibits a latency

that is magnitudes higher (up to 30 ms) than the following

ones in OVS. We can also observe that BPF has relatively a

higher latency than iptables and OVS.

For the Throughput Basic workload (Figure 4b), we observe

that all network solutions appear to scale proportional to the

payload size and that the packet filtering has a negligible

impact on the throughput. We also find that BPF on average

(653 payload size) has significantly less throughput (100 Mbps

less) than iptables and OVS.

(a) Latency basic (b) Throughput basic

Figure 4. Singe-host networking - basic workload

2) Synthetic workloads: We find different results for the

Bursty Traffic (fig. 5), where the packet filters increase the

latency. During the 100-TCP-Connections workload, we also

observe that the latency slightly increases for iptables and

OVS.

Figure 5. Single-host networking - Synthetic workloads

3) Realistic workloads: A significant increase in case of

packet filtering is moreover observed in the Quake 3 workload

(fig. 6) for iptables and BPF. Video Streaming (fig. 6) exhibits

a large latency variance for BPF and iptables, while OVS is

unaffected. The relation between OVS, iptables, and BPF also

correlate with the basic workloads.

We did not observe a significant impact of packet filtering

on the throughput during both: the Synthetic and the realistic

workloads. Therefore, we did not include the results here.

However, one can realize that the Quake 3 benchmark closely

shows similar latency result values compared to the Latency

Basic benchmark. The result of the synthetic and realistic

workloads exhibit an order of magnitude higher latency values

compared to the Latency Basic workload.

Figure 6. Single-host networking - Realistic workloads

D. Multi-host networking

We repeated the same workloads to test the impact of secure

network tunneling on the network performance of container

pairs that communicate across multiple hosts. Below, we show

our results for a total of 32 containers. We distinguish be-

tween multi-host networking use routing (Canal), using layer-

3 tunnels (IPIP, GRE, IPsec), and layer-4 tunnels (VXLAN,

Wireguard, Tinc).

1) Basic workload: The Latency Basic workload is shown

in Figure 7a. All tunnels add additional latency to the traf-

fic. IPIP, GRE, VXLAN, and IPsec add around 20% more

overhead, while Wireguard, Tinc, and OpenVPN nearly double

the latency. This aligns with smaller preliminary studies [30],

[31]. In the results of the Throughput Basic workload, we

find that Wireguard shows the largest increase in throughput

when compared to the other tunnels for 64 and 653 bytes of

payload. We hypothesize that this is because Wireguard uses

a bigger packet buffer for packet processing[20]. Hence, it

favors throughput at the cost of per-packet latency. Most of the

tunnels are able to saturate the links at 1370 bytes of payload

and show the same throughput. However, Tinc and OpenVPN

have the smallest throughput implying the most overhead due

to encryption in user space as opposed to kernel space, in

which the other secure tunnels apply encryption.

(a) Latency basic (b) Throughput basic

Figure 7. Multi-host networking - Basic workload

2) Synthetic workload: Wireguard again shows the highest

effective throughput for the Bursty Traffic workload, seen in
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Figure 8 due to its buffering mechanisms. The rest of the

technologies fall relatively close to the bursty behavior, which

is inherent to the workload itself. The 100-TCP-Connections
workload crashed often and its results were inconclusive.

Therefore, they were not shown here. We leave a thorough

investigation of the root cause for future work.

Figure 8. Multi-host networking - Synthetic workloads

3) Realistic workload: In the Quake 3 workload (fig. 9), all

network tunnels performed close to each other, only Wireguard

showed a slightly higher throughput. Thus, the impact of

encryption was not significant. During the Video Streaming
workload (fig. 9), IPIP and GRE performed the best with close

to 30 Mbps throughput, which is close to what was observed

in the Throughput Basic Workload. IPsec shows more than 8

Mbps less throughput and Tinc shows the least throughput for

this workload. Hence, they are not suitable for video streams

which entail large volumes of traffic under variable network

bit rates.

Figure 9. Multi-host networking - Realistic workloads

While we also benchmarked the packet filters we found that

their effect on the results is negligibly small compared to the

secure tunnels. Thus, we excluded them from the graphs above.

Moreover, we exclude the latency measurements for both: the

synthetic and the realistic workloads as the relative behavioral

difference between the technologies under test was directly

correlated with the baselines in the Latency Basic workload.

E. Discussion

The impact of network throughput and latency on real cloud-

based applications have long been discussed, and it has been

shown that the effective application performance is directly

correlated[32]. Thus, platforms like SeCoNetBench are highly

important to characterize the impact of the design decisions

made when connecting containers across edge clouds on real-

world performance.

Our current study still has some limitations, and this paper

reports on work in progress. The measurements were per-

formed in a virtualized environment. This biases the results,

albeit in a fair manner for all compared technologies.

In future undertakings, we will perform the measurements

on distributed, bare metal machines, to avoid virtualization

artifacts within the benchmarking platform itself. We are also

planning to extend the number of scenarios and parameter

ranges. Increasing the number of connections and access con-

trol policies as well as the traffic, we will bring all components

into heavy regimes. We will then increase the detail of our

measurements, thus being able to report more fine-grained

results with respect to the influence of CPU load, IO, memory,

and network saturation.

On a more general level it will be interesting to identify

the root cause of some of the performance differences: IPsec

clearly benefits from hardware acceleration of AES, Tinc and

OpenVPN clearly suffer from user-space rather than kernel-

space encryption. However, the reasons for highly deviating

throughput penalties of different technologies that wrap ipta-

bles, for example, currently remain largely unclear.

VI. CONCLUSION

In this paper, we surveyed the field of container networking

security solutions, with a focus on isolation of both containers

within a single host, as well as the network flows of their

communication across hosts. We analyze the design space, as

embodied in the latest applied technologies for inter-container

networking, filtering, network tunnels, and VPNs.

We then designed SeCoNetBench, a modular benchmarking

framework to measure their impact on network performance

in edge cloud deployments. Using synthetic and realistic con-

tainer workloads it can assess the performance impact in both

single-host and multi-host container networking scenarios. It

thus provides insight into the overhead of both filtering, as

well as networking and tunneling technologies.

We instantiated SeCoNetBench on Kubernetes, and per-

formed a benchmark of the frameworks that are currently

discussed for container virtualization. With respect to the

overhead, we confirm our expectations that (a) packet filters

have a larger impact on the delay than on the throughput in

single-host settings, and (b) that network isolation by tunnels

or VPNs had a more pronounced impact on the throughput

than filtering, in multi-host scenarios.

The results do not identify a single best solution for all

settings. However, considering typical edge cloud setups with

large numbers of connections, Berkeley Packet Filters (BPF)

and Open vSwitch (OVS) outperformed iptables in filtering

tasks. The results of tunneling were very encouraging: de-

ploying both IPsec and WireGuard entailed only very limited

overhead. In both cases the benchmarks achieved throughput

similar to the insecure tunneling counterparts VXLAN and

IPIP, and security in this case hence comes at almost negligible

cost. WireGuard, however, exhibits increased latency penalties,
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which we attribute to its internal buffering and queuing that is

implemented to increase throughput.
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