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Abstract—While most anonymization technology available today is
designed for static and small data, the current picture is of massive
volumes of dynamic data arriving at unprecedented velocities. From
the standpoint of anonymization, the most challenging type of dynamic
data are data streams. However, while the majority of proposals deal
with publishing either count-based or aggregated statistics about the
underlying stream, little attention has been paid to the problem of contin-
uously publishing the stream itself with differential privacy guarantees.
In this work, we propose an anonymization method that can publish mul-
tiple numerical-attribute, finite microdata streams with high protection
as well as high utility, the latter aspect measured as data distortion,
delay and record reordering. Our method, which relies on the well-
known differential pulse-code modulation scheme, adapts techniques
originally intended for hybrid video encoding, to favor and leverage de-
pendencies among the blocks of the original stream and thereby reduce
data distortion. The proposed solution is assessed experimentally on
two of the largest datasets in the scientific community working in data
anonymization. Our extensive empirical evaluation shows the trade-off
among privacy protection, data distortion, delay and record reordering,
and demonstrates the suitability of adapting video-compression tech-
niques to anonymize database streams.

Index Terms—Database anonymization, data streams, privacy, video
encoding.

1 INTRODUCTION

Much of what we touch and work with today automatically
generates data that someone is disposed to collect and
analyze. The availability of massive amounts of such data
—frequently at the individual level— play a fundamental
role in the extraction of knowledge and decision-making in
contexts as varied as business competitiveness, marketing,
social relationships, transportation, health and wellbeing,
education and politics [1].

Despite the economic and societal good that comes from
big-data research, raising tensions exist with the perceived
risks to individuals’ privacy [2], [3], [4]. To deal with these
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tensions, current legal frameworks in Europe and other re-
gions limit the collection, processing and sharing of person-
ally identifiable information (PII). Basically, the controllers
of PII have a series of obligations towards the individuals
to whom the PII corresponds, which include, among others,
seeking their consent, guaranteeing them rights to access,
rectification and erasure.

The advent of big data, together with the development of
data science in general and machine learning in particular,
has raised the question of how to leverage those PII-data for
secondary purposes (i.e., other than the purpose at collec-
tion time), since complying with the above-mentioned legal
obligations is extremely difficult in a scenario where a bunch
of controllers may exchange and fuse data. It is precisely in
this situation where anonymization comes into the picture,
as the tool that legitimately allows circumventing the legal
restrictions applicable to those data.

Differential privacy (DP) [5] is one of the most promi-
nent privacy notions in the field of anonymization. In the
interactive setting, the assumption is that an anonymization
mechanism sits between an analyst submitting queries and
the database1 answering them. In the non-interactive sce-
nario, on the other hand, a protected version of the original
database is generated and released, which allows any entity
(not necessarily the data analyst in question) to perform
any analyses on the protected data, and permits using such
data, possibly in combination with other information, for
secondary purposes.

The assumption in most of the current anonymization
technology, however, is that the original database does not
change over time and there is no need to publish it more
than once [6]. Nonetheless, in the current context where
colossal amounts of data are generated every single day [7],
this is by no means realistic.

Our work tackles the problem of anonymizing dynamic
databases with DP guarantees. We focus on the most chal-
lenging case, data streams, where only new records and
record updates are published at certain release times, data
freshness is critical, and the order in which the protected
data are released matters. For this type of data, the vast
majority of proposals deal with publishing either count-
based or aggregated statistics about the underlying dynamic
data (e.g., [8], [9]). To the best of our knowledge, only [10]

1. Throughout this work, we shall use the terms data set and database
interchangeably.
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has studied the publication of the database itself (rather
than statistics derived from it) in a context of data stream.
Nonetheless, that work is intended only for data sets with
a single attribute and does not contemplate record updates,
which renders the anonymization scheme useless for practi-
cal stream-data based systems.

1.1 Contribution and Plan of this Paper
The main contribution of this paper is an anonymization
method that can publish multiple numerical-attribute, finite
database streams with DP guarantees through hybrid video
encoding techniques. The proposed method relies on the
signal compression scheme differential pulse-code modulation
(DPCM), and is optimized in a number of different ways to
allow record updates and to provide high-privacy protec-
tion and high-utility guarantees in terms of data distortion,
delay and record reordering.

Our solution operates with blocks of records, which are
input into a closed loop consisting of several modules:
preprocessing, analysis-synthesis, quantization, prediction
and encoder control. On the one hand, the preprocessing,
prediction and encoder control modules work jointly to
select a permutation of the records of the block and a
configuration of the prediction module that minimize the
error in predicting the block; the prediction module can be
configured to both leverage statistical dependencies inside
frames (i.e., groups of blocks protected together) and exploit
dependencies among the different frames of the database
stream. On the other hand, the analysis, synthesis and quan-
tization modules operate jointly to choose the transform
coding scheme and the number of transform coefficients that
will be protected in order to minimize the mean squared
error (MSE) incurred in releasing the synthetized, protected
block (instead of the original one).

The proposed solution is evaluated experimentally on
two real data sets, “(Very) Large Census” and “Quant For-
est”, which are two of the largest datasets in the commu-
nity of statistical disclosure control. A variety of empirical
results shows the trade-off among privacy protection, data
distortion, delay and record reordering, and demonstrates
the suitability of our approach.

The remainder of this paper is organized as follows.
Sec. 2 establishes some preliminaries and reviews the state
of art relevant to this work. Sec. 3 formally states the prob-
lem tackled in this paper. Sec. 4 describes our approach to
generate DP database streams through hybrid video encod-
ing techniques. Sec. 5 conducts an experimental evaluation
of the proposed anonymization method. Sec. 6 discusses
previous work on differentially-private transform coding.
Finally, conclusions are drawn in Sec. 7.

2 PRELIMINARIES

2.1 Differential Privacy
DP was originally proposed as a privacy model in a interac-
tive setting to protect the outcomes of queries to a database.
In this setting, the assumption is that an anonymization
mechanism sits between a user submitting queries and a
(trusted) database curator answering them.

Our work focuses on a non-interactive setting, where
the curator releases a protected version of the database,

allowing the user to perform hopefully any analysis on the
data without further interacting with the curator.

Central to DP is the notion of neighbor databases, which
can be interpreted in two different ways. On the one hand,
the unbounded case assumes one entry is either removed or
added. On the other hand, the bounded notion considers
the replacement of one record by another. An important
difference is that the former case assumes the size n of the
database to be publicly known, whereas the latter assumes
this parameter is private. Nonetheless, the two notions of
neighborhood are very related and mechanisms satisfying
one can be adapted to meet the other. For the sake of
mathematical simplicity, we use the latter definition.

We shall consider central DP2, as defined below.

Definition 1 (L1-sensitivity [5]). Let D be the class of possible
data sets. The global sensitivity or L1-sensitivity of a query
function f : D → Rd is defined as

GS(f) = max
x,x′∈D

‖f(x)− f(x′)‖1,

where x,x′ are any two neighbor databases in the sense described
above.

Definition 2 (ε-Differential privacy [5]). A randomized mech-
anism M on a query function f satisfies ε-differential privacy
with ε > 0 if, for all pairs of neighbor databases x,x′ and for all
O ⊆ range(M),

P{M(f(x)) ∈ O}
P{M(f(x′)) ∈ O}

6 exp(ε).

2.2 Related Work

In this subsection, we review the state of the art relevant
to this work. We first examine the classical approaches
to anonymize static data sets, and secondly analyze those
proposals aimed to protect dynamic data. In both cases, the
privacy model assumed is DP.

2.2.1 Histograms versus Record Masking

Even if DP was initially proposed to limit disclosure risk
in database queries, mechanisms to generate DP data sets
(i.e., the so-called non-interactive setting) appeared soon
after its inception. Nonetheless, except for the simplest data
domains, publishing useful DP data sets (i.e., data sets
that well approximate the original ones) remains a highly
challenging task.

There exist two main approaches to generate DP data
sets: histograms and record masking. In the former case, given
an original data set x, we generate a histogram h through
a suitable partitioning of the data domain. From this point
on, we discard x and the target of protection is h. Hence,
the goal is to publish hε, an ε-DP version of h. In the latter
case, the aim is to generate xε, an ε-DP version of x, that is,
an anonymized version of the data in the original format.

The histogram approach takes advantage of the low
sensitivity of counting queries over a partition of the data
domain [11]. The naive application of this mechanism, how-
ever, becomes problematic as the complexity of the data

2. It is also called as user-level DP in data streaming applications.
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domain increases. Note that, for a fixed accuracy, the cardi-
nality of the partition (number of bins) grows exponentially
with the number of attributes, which may have important
effects on the computational cost and the accuracy of the
protected data.

Some mitigation strategies have been proposed to tackle
the issues caused by data dimensionality. In [12], given a
partition, the authors propose an algorithm that minimizes
the error for a given family of counting queries. In [13], data
summarization techniques are utilized to reduce the time
and space complexity, by making time and space propor-
tional to the number of non-empty cells in the summarized
data set. An alternative way to deal with those issues is
to apply dimensionality-reduction techniques. This is the
strategy followed by [14], which models the dependency
between attributes to generate the DP data set from a set of
low-order marginals.

The alternative to generate DP data sets based on record
masking avoids partitioning the data domain. Instead, the
data set is protected by masking the original records. How-
ever, masking each record by adding a Laplace-distributed
noise with magnitude proportional to the record sensitivity
is not a feasible solution. Since the purpose of DP is to hide
the presence of any single record, such a naive approach
inescapably needs to introduce too much noise, thereby
producing significant utility damage.

As a result, a wide body of research has investigated how
to reduce the sensitivity of the queries used to generate the
DP data sets. A few examples include [15], [16], [17], where
microaggregation [18] is utilized with that purpose. In the
cited works, rather than querying each original record,
only the representatives of the microaggregation clusters are
queried. Since a cluster representative is an aggregation of
the records in the cluster, intuitively its global sensitivity is
smaller than that of any single record. Clearly, the amount
of sensitivity reduction depends on how such representative
values are computed.

2.2.2 Differentially Private Publication of Dynamic Data
The aforementioned anonymization schemes assume that
the original data set does not change over time and, there-
fore, that there is no need to publish them more than once.
However, in the current context of big data, this seems not
realistic.

Obviously, a straightforward application of the previous
schemes to the scenario at hand would still be possible.
Nonetheless, applying those methods independently at each
release time, i.e., without considering correlations between
consecutive releases or the dynamics of the data stream, may
not be an appropriate approach.

Few recent works have tackled the problem of protect-
ing dynamic data sets with DP guarantees. Essentially, the
privacy research community has focused on two distinct
scenarios. In the former scenario, all available data or a
synopsis thereof (e.g., histograms) are anonymized period-
ically, although not necessarily at regular time instants. On
the contrary, in the latter scenario, (i) data items are not
republished in multiple versions, i.e., only new or updated
data are protected at a given release time; (ii) time is critical,
in the sense that a new or updated data item must be
anonymized and published within a predefined, short time

frame; and (iii) the order in which the protected data are
released matters. Following the terminology of [19], we shall
refer to these two scenarios respectively as multiple release
and data stream.

Distinct technologies have been developed for each case.
In the multiple-release scenario, [20] studies the problem of
publishing histograms of dynamic data sets. Instead of gen-
erating a DP histogram at each release time, the cited work
proposes computing only new histograms when the update
is significant, that is, when a distance measure between
the current histogram and the latest released histogram
exceeds a threshold. The proposed strategy is independent
of how histograms are computed at each release time, and
the goal is to adjust the threshold adaptively based on
data dynamics. The main problem of this proposal is that
it suffers from all the limitations of the static histogram
approach mentioned in Sec. 2.2.1.

Another proposal for multiple release is [21], which deals
with the publication of histograms as well, but combines
sampling [22] with clustering (i.e., time units with similar
trends are grouped) to improve utility. The proposed so-
lution, however, adopts an event-level DP approach [23],
which protects the presence of an individual event, i.e., an
individual’s contribution to the data stream at a single time
point, rather than their presence or contribution to the entire
publication series (also known as user-level DP).

In the case of data stream, the vast majority of propos-
als focus on publishing either count-based or aggregated
statistics. One of those works is [8], which aims to protect
count series (e.g., the daily count of people diagnosed with
HIV/AIDS) over individuals continuously. The proposed
scheme provides user-level DP and assumes the series are
generated by an underlying process from which predictions
are made to enhance the accuracy of the released data. How-
ever, a statistical model of the process needs to be assumed
or inferred from public data with similar patterns, and
therefore the anonymization scheme may not be effective
when the actual data deviate from it.

PeGaSus [24] is another proposal that aims to release
continuous count-based statistics. Unlike [8], the notion of
neighborhood between databases (and so DP) is modified
here to suit streaming analytics but it is only intended to
protect single-data events, analogously to event-level DP.

A more recent work is OptStream [9], which generates
a sequence of protected data where each term represents
a private version of the aggregated data (e.g., a count) up
to a given time instant. The proposed solution relies on
the w-event framework [25], which extends the definition
of DP to protect stream analytics. However, like PeGaSus,
it cannot be applied to release the database stream itself
and, besides, the target of protection are not individuals’
full contributions to the stream3.

To the best of our knowledge, only [10] has studied
the publication of the database itself (rather than statistics
derived from it) in a context of data stream, which is
the focus of this work. δ-DOCA, as the method is called,
adopts a record-masking approach and provides central
ε-DP, which means all contributions (and not only some

3. w-event privacy does not protect event sequences occurring be-
yond a time window of size w.
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consecutive pieces thereof) are protected. Nonetheless, it is
intended only for data sets with a single attribute and does
not contemplate record updates.

3 PROBLEM STATEMENT

We shall follow the convention of using uppercase letters
for random variables (r.v.’s), lowercase letters for the par-
ticular values they take on, and bold letters for matrices.
Probability density functions (PDFs) and probability mass
functions (PMFs) are denoted by p and subindexed by the
corresponding r.v. We adopt the same notation for vectors
in [26] and use parentheses to construct column vectors from
comma-separated lists.

We study the protection of database streams4 with central
DP guarantees, which means there is a trusted entity (i.e.,
the curator) that gathers data continuously from a popula-
tion and takes charge of protecting them from the outside
world.

There are multiple ways to define DP in such a data
streaming setting, e.g., at the granularity of attributes [27],
events [23], windows of events [25], records or individuals.
This work assumes the required protection is at the individ-
ual level (also known as user-level DP), that is, the curator
aims to protect all tuples or records corresponding to any
individual in the stream database.

Mathematically, we model database streams as discrete
time vector processes. An original database stream {Si}
is defined, accordingly, as a sequence of continuously in-
coming tuples Si = (Ii, Ai1, . . . , Aid), where Ii is an r.v.
denoting the identity of the subject to whom Si corresponds,
and Ai1, . . . , Aid are r.v.’s representing d attributes of that
subject. Throughout this work, we shall also refer to the
tuples of a database stream as records.

In general, the protection of a stream requires some
sort of distortion (e.g., Laplace-noise addition) of the origi-
nal attribute values, and therefore implies inevitably some
information loss. We denote by {Sεi } an ε-DP version of
the original database stream {Si}, that is, a sequence of
continuously output tuples Sεi = (Aεi1, . . . , A

ε
id), where

identities are removed and Aεi1, . . . , A
ε
id are suitably dis-

torted versions of the attribute values in the original tuple
corresponding to Sεi .

To quantify how well the distorted attribute values ap-
proximate the original ones, we shall use the sum of squared
errors (SSE), a measure of distortion frequently employed in
the evaluation of DP mechanisms.

The degree of distortion of the protected attribute values
is one dimension of the information loss incurred by a pro-
tection method. The other dimensions are related to the fact
that some, or all, of the records in the original stream may
be delayed and reordered; obviously, any method for data
streams must buffer incoming tuples before protecting them.
Next, we slightly generalize the delay-constraint definition
of [28].

Definition 3 (Delay constraint). LetM be a protection mech-
anism that takes as input a database stream {Si} and outputs an
ε-DP stream {Sεi }. For a positive integer δ,M is said to satisfy

4. For brevity, we shall refer occasionally to a database stream simply
as “stream”.

the delay constraint δ if, upon receiving any new tuple Si, M
has already output all the protected tuples corresponding to tuples
in {Si} with position less than i− δ + 1.

While delay constraints are common in the context of
data stream, to the best of our knowledge no attempt has
been made to preserve the order of the incoming records.
In [10], for example, tuples are reordered as much as needed
to satisfy maximum attribute homogeneity for a given delay,
ignoring the value of the information encoded in such order.
To make our analysis as comprehensive as possible, we shall
quantify the impact of such reordering through a reordering
cost function.

Unlike [10], we also contemplate tuple updates, meaning
there can be tuples arriving at different time instants that
belong to a same subject but contain different attribute
values. In this work, we require that such updates satisfy
the following mild constraint.

Definition 4 (Tuple-update constraint). Let {Si} be an orig-
inal database stream and T ⊆ {Si} the sequence of all tuples
corresponding to a given subject. For a positive integer α, the
original stream satisfies the tuple-update constraint α if, for
any subject and any two consecutive tuples of T , such two tuples
differ at least in α positions in {Si}.

Informally, Definition 4 tells us that we should expect a
lag between a tuple and its update, or between two con-
secutive updates. With a mild loss of generality, this work
will assume α > δ. Since, by Definition 3, the maximum
number of buffered tuples at any moment is δ, the tuple-
update constraint ensures those two tuples (i.e., a tuple and
its update, or two consecutive updates) will not coincide in
the buffer. In real practice, however, if the condition α > δ
is not met, only the most recent tuple will be output.

A direct consequence of the fact that tuples can be
updated is the finite length of the protected database stream.
Since the level of protection ε is necessarily finite, by the se-
quential composition property of DP [29] the privacy budget
will be consumed completely at some time instant. We shall
denote by l the target length of the protected database stream,
that is, the number of incoming records the database curator
wishes to protect.

Given all such considerations, the problem tackled in
this work is as follows. We aim to design a DP mechanism
suitable for database streams that, for a given ε and l,
achieves serviceable points of operation in the privacy-
utility trade-off, being utility measured as distortion, delay
and reordering.

4 DIFFERENTIALLY PRIVATE CONTINUOUS PUBLI-
CATION OF DATA SETS VIA HYBRID VIDEO ENCOD-
ING

This section describes our methodology to publish DP
database streams through hybrid video encoding tech-
niques.

In this work, we propose the masking of database
streams at the record level, instead of at the histogram level.
Doing so is computationally efficient, since the cost is linear
with the number of records. However, plain independent
masking of the records in the original database stream may
degrade utility severally, as we describe next.
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Fig. 1: Overview of the proposed scheme to generate DP database streams. Dashed and continuous lines indicate the data at those points are
respectively protected and unprotected.

For a positive integer r, define the identity function
Ir({Si}) as the function that returns the attribute values
of the r-th element (i.e., record) of {Si}. Since the whole
process {Si} can be interpreted as the collected answers —
except for subjects’ identity— to the queries Ir({Si}) for
all available elements, an intuitive way to generate the
protected stream Sε1 , . . . , S

ε
l with δ = 1 is collecting an

ε/l-DP response to each Ir({Si}) for r = 1, . . . , l. Since
we allow record updates, it follows from the sequential
composition property that Sε1 , . . . , S

ε
l also meets the desired

ε-DP requirement. In short, with this methodology, the
protected database stream is generated by providing a DP
response to the queries asking for the values of all attributes
in l records of the original sequence.

Although this record-level perturbation methodology
does not make any assumptions on the uses of the output
data, unfortunately it may come at the expense of a huge
information loss. Throughout this paper, we shall assume
each attribute j takes on values in the interval [0,Λj ], and
denote by Λ the column vector (Λ1, . . . ,Λd). Since each
query Ir refers to a single individual, its L1-sensitivity is as
large as

∑d
k=1 Λk, which implies a huge distortion to attain

ε-DP. The result is a database stream Sε1 , . . . , S
ε
l with very

limited utility.
To make record-level masking viable to generate DP data

sets, there is an evident need to reduce the sensitivity of the
query function/s to be used. In the following subsections,
we shall describe a method that protects, at a time, groups
of tuples conveniently sorted, and exploits statistical depen-
dencies among releases.

4.1 Overview
We propose a protection method that relies on the DPCM,
which is closely related to the concept of closed-loop pre-
dictive quantization. The basic structure of our method is
illustrated in Fig. 1 and described succinctly next. Each indi-
vidual module is analyzed in greater detail in the following
subsections.

In our protection method, the database stream tuples
{Si} are not directly processed, but buffered at a prepro-
cessing module, where records are appropriately sorted. In
particular, as soon as m records are available at this module,
groups of n < m consecutive records are removed from
the buffer and input into the closed loop successively, i.e.,
one after another. We shall assume that m = n b for some
integer b > 1, and that groups are processed in order of their
records. Following the terminology of numerous image and

video compression formats, we shall refer to this processing
unit as block. In analogy to video coding, the set of b of such
blocks will be called a frame.

From a notational point of view, note that, while i in-
dexes individual records within the original database stream,
j indexes blocks of n records within the closed loop. On the
other hand, since all modules inside the loop operate at the
block level, for mathematical convenience we shall model
such blocks as random matrices of dimension n× d. Hence
the notation of Fig. 1.

Essentially, each block Xj is predicted based on the
previous protected blocks X̃j−1, X̃j−2, . . . , X̃j−π , for some
integer π. The prediction block X̂j is subtracted from the
preprocessed input block Xj , thereby yielding a prediction
error Ej = Xj − X̂j . The block Ej is then transformed,
quantized and protected with εj-DP, respectively by the
modules analysis and quantization. The synthesis module
afterwards reverses the previous transformation and the
upshot is a protected and reconstructed block Ẽj for the
prediction error Ej . Then, Ẽj is added to the predictor X̂j ,
resulting in the reconstructed output block X̃j . Releasing
X̃j in a single batch yields n consecutive records of the
protected database stream Sε1 , . . . , S

ε
l .

The fundamental principle upon which the above
methodology relies is difference quantization. One simple but
important result that follows from the fact that

Ej = Xj − X̂j ,

Ẽj = X̃j − X̂j ,
(1)

is that the overall MSE in releasing X̃j instead of Xj is equal
to the MSE incurred in quantizing Ej . Formally,

E ‖Xj − X̃j‖2F = E ‖Ej − Ẽj‖2F, (2)

where ‖ · ‖F denotes the Frobenius norm.
When X̂j in (1) is a prediction of Xj based on some

information about the past of Xj , Eq. (2) is called the
fundamental theorem of predictive quantization [30]. Note,
however, that (2) holds for any X̂j regardless of whether
it is a prediction of Xj or not. When it is, in the context
of image and video compression, algorithms can be more
efficient. In our context of database stream, we shall show
that privacy protection can be provided with less distortion,
drawing an analogy between these two fields.

We have mentioned that the analysis module applies a
transformation on the prediction error block Ej . Although
multiple transformations are possible, here we use the most



6

popular one in image and video compression, the discrete
cosine transform (DCT), as well as the discrete sine trans-
form (DST) and the discrete Hartley transform (DHT). Apart
from variety, the reason for our choice is as follows. They
are all orthogonal, two-dimensional separable and data-
independent, and they all exhibit high-energy compaction,
meaning that information, after being transformed, tends to
be concentrated in a few, low-frequency transform coeffi-
cients.

As we shall describe in Sec. 4.3, the quantization module
will be in charge of selecting which coefficients are retained
and perturbed with the Laplace mechanism, and which ones
are removed. Regardless of the selection criterion, however,
predicting Xj from the reconstructed (and protected) past
has two immediate advantages. On the one hand, the vari-
ance of the error block Ej will in principle5 be less than
the variance of the original block Xj , so that a reduced
range of values will be transformed and protected. In image
coding, predictive quantization (without transform coding)
has the ability to increase the accuracy of the quantized
values without increasing the number of coding bits. In
our case (where we additionally consider transform coding),
a smaller variance of the elements of Ej will intuitively
translate into a smaller number of high-frequency transform
coefficients. As a result, the same privacy budget εj will
be distributed among less coefficients, thus yielding less
distortion.

On the other hand, predicting Xj from reconstructed
blocks has an evident advantage both in video coding and
in database streams. In the former application, it allows both
an encoder and decoder to generate the same block X̂j

without transmitting any additional information from the
former to the latter. In our case, due to the post-processing
property [31] of DP, we shall generate each prediction block
without consuming any privacy budget.

With the proposed method, we shall therefore be able
to output εj-DP blocks. At the frame level, since α > δ >
m > n, each of the blocks of a same frame will contain
records belonging to different subjects6. The result is that
each protected frame will also satisfy εj-DP by the parallel
composition property of DP [31]. To meet the requirement
of protecting l input records, it will suffice to set εj = εm/l
for all j.

4.2 Transform Coding
The aim of transform coding is to apply an adequate linear
transformation on each input block, so that the transform co-
efficients are much less correlated than the original samples
and the information is more “compact” in the sense of being
concentrated in only a few of the transform coefficients7.
It is important to note that transform coding exploits only
dependencies among the samples of a single block. For addi-
tionally utilizing dependencies among transform blocks and
frames, intra-picture and inter-picture prediction techniques
can be used.

5. As long as the prediction is good enough.
6. Said otherwise, the sets of subjects protected in those blocks will

be non-overlapping.
7. We emphasize that there is no general theoretical result that states

that uncorrelated quantities can be more efficiently quantized than can
correlated variables.

Transform codes are popular because they provide an
attractive compromise between computational complexity
and performance. As mentioned in Sec. 4.1, we shall use,
among others, the DCT, a data-independent transform that
is employed in all practical video coding schemes. Although
there are several DCTs, the DCT-II is probably the most
commonly used form and is often simply referred to as “the
DCT”. In addition to the DCT, our scheme also incorporates
the DST-I and the DHT.

For notational simplicity, in this subsection we shall drop
the subindex j of the r.v.’s represented in Fig. 1. In addition,
we shall assume realizations of these variables.

Let an = [anij ] denote the n× n transformation matrix of
any of the three transforms employed by the analysis and
synthesis modules. In the case of the DCT, the entries of an

are

anij =


1√
n
, if i = 1√

2

n
cos
( π

2n
(i− 1) (2j − 1)

)
, if i > 1.

In the case of the DST and DHT, the entries of the corre-
sponding matrices are respectively

anij =

√
2

n+ 1
sin

(
π

n+ 1
ij

)
and

anij =

√
2

n
cos

(
2π

n
(i− 1)(j − 1)− π

4

)
.

Recall [32] that, given a matrix x of dimensions n × d,
the forward and inverse transform of a separable, two-
dimensional transformation is given respectively by

y = an x ad
T
, x = an

T
y ad. (3)

Our next result, Lemma 1, derives the global sensi-
tivity of the transformed coefficients of a separable, two-
dimensional transformation, when a prediction block is
subtracted from an input block. The strength of this result
lies in that it is not restricted to the transforms contemplated
in this work.

Lemma 1 (Sensitivity of transform coefficients). For any i =
1, . . . , n, denote by r∗(i) the index that maximizes |anir|. Let x be
an observed block of n > 2 records and d attributes, x̂ a prediction
block, and e the corresponding error. Denote by fcij the query
function that returns the element (i, j) of the transform block
c = an e ad

T
. The L1-sensitivity of this function is

GS(fcij ) = |ani,r∗(i)|
d∑
k=1

Λk|adjk|.

Proof: Consider two neighbor input blocks x and x′,
and their corresponding transformed error blocks c and c′.
For any r ∈ {1, . . . , n}, denote by xr = (xr1, . . . , xrd) and
x′r = (x′r1, . . . , x

′
rd) the respective values of the different

record in either input block. Clearly, since x̂ does not depend
on x or x′, but on previous reconstructed blocks,

c− c′ = an (x− x′) ad
T
.
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DCT       DST       DHT

(a) (b) (c) (d)

Fig. 2: (a-c) Relative difference in L1-sensitivity, as defined in (6), among the discrete cosine, sine and Hartley transforms for two block sizes,
n = d = 8 (top-row figures) and n = d = 16 (bottom-row figures). (d) Transform with the minimum sensitivity value for each coefficient, for
n = d = 8 (top figure) and n = d = 16 (bottom figure). The results have been computed for Λ = 1.

From (3), simple algebraic manipulation then shows

cij − c′ij =
d∑
k=1

anir a
d
jk(xrk − x′rk). (4)

Accordingly,

GS(fcij ) = max
x,x′
|cij − c′ij |

= max
xr,x

′
r

{
|anir|

∣∣∣∣∣
d∑
k=1

adjk(xrk − x′rk)

∣∣∣∣∣
}

(a)
= max

r
|anir| max

xr,x
′
r

∣∣∣∣∣
d∑
k=1

adjk(xrk − x′rk)

∣∣∣∣∣
(b)
= |ani,r∗(i)|

d∑
k=1

Λk|adjk|,

where
(a) reflects that the maximization of |anri| with respect to all

xr and x′r depends just on the position index r; and
(b) holds with equality since the components of xr and x′r

can be chosen so that all terms adkj(xrk − x′rk) have the
same sign. �

An important conclusion that follows from Lemma 1 is
that the sensitivity of any coefficient cij (regardless of the
particular transformation used) depends on the sensitivity
of each and every attribute, rather than on a single Λk.
In other words, there is no a one-to-one correspondence
between the sensitivity of the attribute value of a record
in x, and that of the transform coefficients, which in prin-
ciple may limit the benefits of transform coding. Our next
result, Corollary 1, shows that this limitation is, fortunately,
compensated in part by an averaging effect of Λ. Before

proceeding, we first prove an interesting property of the
DCT transform matrix, used in the corollary.

Proposition 1 (Property of the DCT transformation matrix).
For any i = 2, . . . , n, any j = 1, . . . , d, and any n > 2, |anij | >
an1j .

Proof: Assume 2j − 1 and 2n are mutually prime. By
Bézout’s identity, there exist then integers α and β such that

α(2j − 1) + β2n = 1. (5)

Note that, for an arbitrary integer k, αk = α+k2n and βk =
β−k(2j−1) satisfy (5), but αk = kn does not. Consequently,
we may restrict the set to which α belongs to be {1, . . . , n−
1, n+ 1, . . . , 2n− 1}.

Define i = α+ 1 if α < n and i = 2n+ 1− α otherwise,
and verify that i ∈ {2, . . . , n} in either case and that (i −
1)(2j − 1) = ±1− β2n for any β ∈ Z. Hence,

|anij | =
√

2

n

∣∣∣cos
( π

2n
(i− 1) (2j − 1)

)∣∣∣
=

√
2

n

∣∣∣cos
(
± π

2n
− βπ)

)∣∣∣
=

√
2

n
cos
( π

2n

)
>

1√
n

= an1j ,

by virtue of n > 2.
Next, assume 2j − 1 and 2n are not coprime integers.

Denote by d their greatest common divisor and verify that
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d > 3. Define i = 2n/d+ 1 and check i may take values on
{2, . . . , n}. Since 2j− 1 = βd for some β ∈ Z, it follows that∣∣∣cos

( π
2n

(i− 1) (2j − 1)
)∣∣∣ = |cos (βπ)| = 1,

and therefore |anij | > an1j . �
The following result, Corollary 1, compares the sensi-

tivity of the coefficients of the DCT, DST and DHT, with
that of Ir , the identity function used by the naive record-
perturbation approach, which we described at the beginning
of this section. Also, the corollary shows the low sensitivity
of the DCT coefficients of the first row.

Corollary 1. Let GS(Ir) denote the L1-sensitivity of Ir , and f c
cij

the query function that returns the element (i, j) of the DCT. For
any i = 1, . . . , n and any j = 1, . . . , d,

(i) GS(f c
c1j ) 6 GS(f c

cij ),
(ii) GS(fcij ) 6 2√

nd
GS(Ir).

Proof: The first claim is immediate from Proposition 1
and Lemma 1, by noting that

an1j 6 |anij | 6 |ani,r∗(i)|

for the DCT matrix an. For the same transform and for i > 2,
it follows that

GS(f c
cij ) =

√
2

n

∣∣∣cos
( π

2n
(i− 1) (2r∗(i)− 1)

)∣∣∣×(
Λ1√
d

+
d∑
k=2

Λk

√
2

d

∣∣∣cos
( π

2d
(j − 1) (2k − 1)

)∣∣∣)

6

√
2

n

√
2

d

d∑
k=1

Λk

=
2√
nd

GS(Ir).

In the case of a DST and a DHT, an entirely analo-
gous derivation leads to GS(f s

cij ) 6 2GS(Ir)/
√
nd and

GS(fh
cij ) 6 2GS(Ir)/

√
(n+ 1)(d+ 1), respectively. Since

GS(f c
c1j ) 6 GS(f c

cij ) from claim (i), we prove the second
statement. �

Corollary 1 tells us that the sensitivity values of the
transform coefficients are significantly lower, compared to
that of the baseline identity function. Specifically, for n = d,
GS(fcij ) can be interpreted roughly as averaging Λ by the
number of records (attributes).

Direct application of Lemma 1 allows us to examine the
differences in terms of sensitivity among the cosine, sine and
Hartley transforms. For ease of comparison, we define the
sensitivity relative difference between transforms σ and ρ as

rσρ =
GS(fσcij )− GS(fρcij )

min{GS(fσcij ),GS(fρcij )}
, (6)

where σ, ρ ∈ {c, s, h}. Fig. 2 shows the percentage values
of the quantities rcs, rch and rsh for two square block sizes,
namely, n = 8 and n = 16.

Several remarks are in order from this figure. First, we
observe that the DST is preferable to the DCT except for
roughly two rows, i = 1 and i = 5 for n = 8, and
similarly for n = 16 (Fig. 2(a)); this observation is consistent
with the first claim of Corollary 1. When compared to the

DHT, however, the sensitivities of the DST coefficients are
observed to be much larger in odd rows for n = 8. In
contrast, this latter transform exhibits smaller sensitivities
in columns 1, 5, 9 and 11 for n = 16.

In general, the sine and Hartley transforms seem to
be more suitable, as reflected in Fig. 2(d), where for each
coefficient we represent the transformation with the least
sensitivity. This is evident for n = 8, where, for all but 6
coefficients, these transforms outperform the DCT. The case
n = 16 is less clear although it still shows the DHT as
the transformation with the largest number of coefficients
with least sensitivity. We would like to stress that this does
not signify the other two transforms are inappropriate. In
fact, the suitability of any transform will hinge upon the
block size, the individual attribute sensitivities Λ, and more
importantly, the specific coefficients to be protected as well
as the ability of the transform to compact energy.

4.3 Quantization

In source coding, lossy systems are characterized by the fact
that the reconstructed signal is not identical to the source
signal. The process that introduces the corresponding loss
of information is called quantization, and the algorithm that
performs the quantization process is referred to as quantizer.
Although in image and video coding the information loss
is due to analog-to-digital conversion, in a mild abuse of
terminology we refer to quantization more generally as the
process whereby distortion is introduced. In this subsection,
we shall omit the block index j and therefore subindexes
will denote elements of the corresponding matrices. For
simplicity, we shall also drop the subindex of εj .

The purpose of introducing distortion is to satisfy a DP
requirement. As we shall show next, our quantizer will
be designed to cause the least possible loss of informa-
tion while meeting this requirement. Although we shall be
looking at the overall MSE in releasing X̃j (instead of Xj),
a typical measure of performance for the quantizer is the
coding gain [30], defined as the ratio

GQ =
E ‖C‖2F

E ‖C− C̃‖2F
, (7)

which is simply the signal-to-noise (SNR) power ratio
achieved by the quantizer.

Our quantizer aims to appropriately select a subset
of transform coefficients of C, protect them through the
Laplace mechanism, and eliminate the remaining ones. Let
t be the number of retained coefficients, and ε ∈ Rn×d+

a matrix with the privacy budget εij assigned to each of
them. We consider implicitly that εij = 0 if the transform
coefficient Cij is not selected. On the other hand, we assume
‖ε‖1 = εQL

< ε. Accordingly, the quantization module
outputs

C̃ij =

{
Cij + L

(
0,GS(fcij )/εij

)
, if Cij is selected

0, otherwise,

where L is a zero-mean Laplacian r.v. with scale
GS(fcij )/εij .

Quantization therefore incurs two sources of error: first,
the error due to eliminating nd−t coefficients, and secondly,
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(a) (b)

Fig. 3: (a) Zig-zag and (b) diagonal orders for scanning a trans-
form coefficient matrix with n = d = 4. In this figure, the se-
quence of matrix indexes specified by the zig-zag order is O =
((1, 1), (1, 2), (2, 1), . . . , (4, 4)).

the noise added to the remaining t coefficients to attain εQL
-

DP. We shall refer to these two errors as coefficients-removal
and Laplace errors, respectively.

Clearly, there is a trade-off between such two errors.
For a fixed εQL

, if t approaches nd, the coefficients-removal
error will likely be small or even negligible, but the privacy
budget will need to be distributed among a significant
number of coefficients, thereby causing the Laplace error
to be large. The opposite occurs if t is small compared to
nd. The fundamental questions that we address next are (i)
how to choose t; and (ii) given t, which coefficients of C
need to be protected, so that these two decisions cause the
minimum overall distortion. We tackle these two questions
in reverse order.

4.3.1 Selection and Protection of Transform Coefficients
Intuitively, in the choice of transform coefficients, their
global sensitivities as well as the possible values they may
take on will play an important role. Let νij = Pr{Cij > 0}.
In video coding, it is typically advantageous to arrange the
transform coefficients Cij of a block in the order of decreas-
ing probabilities νij . However, the transform coefficients of
a block have to be transmitted in a certain order that is also
known to the decoder. Making this order data-dependent is
clearly inefficient, since it would need to be conveyed on a
per block basis.

Most video coding standards adopt a predefined, signal-
independent approach by leveraging the fact that, in trans-
formed error blocks, νij usually decreases with increasing
frequency indexes i and j. A signal-independent scan in
video coding that approximately arranges the transform co-
efficient values in the desired order is the zig-zag scan. This
scan, which is illustrated in Fig. 3(a) for the example of a 4×
4 block, is used in most video coding standards. H.265, also
known as MPEG-H Part 2 or high efficiency video coding
(HEVC), may operate with the diagonal scan depicted in
Fig. 3(b). The two scans have similar properties but the latter
provides some benefits for certain implementations.

In our case, arranging the coefficients of C according
to νij is a data-dependent operation and, as such, would
not satisfy DP. To cope with this, we follow an approach
entirely analogous to that of video coding and assume the
coefficients of C are arranged in an order defined by a
coefficients order O. Accordingly, given such an order and

a number t of coefficients to protect, our quantizer proceeds
just by selecting the first t coefficients in the given order.
Next, we examine how these coefficients are protected.

Denote by ξX̃(ε,O, t) the MSE incurred in outputting
X̃ instead of X, where conveniently we make explicit its
dependency with the assignment of the privacy budget to
the t selected coefficients, and with the parameters specify-
ing which concrete coefficients are to be protected. Our next
result shows that this error consists in the sum of the MSEs
due to the removal of coefficients and DP protection at the
quantizer.

Lemma 2 (Laplace and coefficients-removal errors). Given
ε, O and t, the MSE in releasing X̃ rather than X is

ξX̃(ε,O, t) = 2
t∑

k=1

GS(fcO(k)
)2/ε2

O(k) +
nd∑

k=t+1

EC2
O(k).

Proof: From (2), we know that E ||X − X̃||2F = E ||E −
Ẽ||2F . On the other hand,

E ||E− Ẽ||2F = E tr
(

(E− Ẽ)T(E− Ẽ)
)

= E tr
(

(an
T
(C− C̃)ad)T(an

T
(C− C̃)ad)

)
= E tr

(
ad

T
(C− C̃)Tanan

T
(C− C̃)ad

)
(a)
= E tr

(
ad

T
(C− C̃)T(C− C̃)ad

)
(b)
= E tr

(
(C− C̃)T(C− C̃)adad

T
)

(c)
= E ||C− C̃||2F,

where

(a) and (c) follow from the orthogonality of an and ad,
respectively; and

(b) uses the fact that the trace is invariant under cyclic
permutations.

Using the matrix indexes given by O, it follows that

E ||C− C̃||2F = E
n∑
i=1

d∑
j=1

(Cij − C̃ij)2

=
nd∑
k=1

E(CO(k) − C̃O(k))
2

=
t∑

k=1

E
(
L(0,GS(fcO(k)

)/εO(k))
)2

+
nd∑

k=t+1

EC2
O(k).

Finally, we derive the expression claimed in the statement
by recalling that the variance of a Laplacian r.v. of scale
parameter b is 2b2. �

Lemma 2 provides the MSE incurred by quantization,
and shows that the Laplace and coefficients-removals errors
are strictly increasing and non-increasing with t, respec-
tively. We explore next how to distribute the privacy budget
among the selected coefficients so that the total error is
minimized.



10

Denote by ε∗ the optimal assignment of εQL
,

ε∗ = arg min
ε

εO(k)>0, k=1,...,t∑
k εO(k)=εQL

ξX̃(ε,O, t). (8)

Theorem 1 (Optimal assignment of εQL
). For any given O

and any t ∈ {1, . . . , nd}, the optimal assignment ε∗ is

ε∗O(i) =
GS(fcO(i)

)2/3∑t
k=1 GS(fcO(k)

)2/3
εQL

for i = 1, . . . , t, and the corresponding minimum MSE yields

ξX̃(ε∗,O, t) =
2

ε2
QL

(
t∑

k=1

GS(fcO(k)
)2/3

)3

+
nd∑

k=t+1

EC2
O(k).

Proof: The proof is organized in two steps. First, we
show that the optimization problem implicit in (8) is convex.
Secondly, we use Karush-Kuhn-Tucker (KKT) conditions to
solve the problem.

For notational conciseness, we denote εO(1), . . . , εO(t) by
ε1, . . . , εt, and define

γk = 2GS(fcO(k)
)2 and fk(εk) = γk/ε

2
k.

To show that the problem is convex, note that, from
Lemma 2,

ξX̃(ε,O, t)−
nd∑

k=t+1

EC2
O(k)

is the sum of strictly convex functions fk, and observe
that the inequality and equality constraint functions are
linear and affine. Since the objective and constraint functions
are also differentiable and Slater’s constraint qualification
holds, KKT conditions are necessary and sufficient condi-
tions for optimality [26, §5]. The application of these opti-
mality conditions leads to the following Lagrangian cost,

L =
∑

fk(εk)−
∑

λkεk − µ
(∑

εk − εQL

)
,

and finally to the conditions

f ′k(εk) + λk − µ = 0 (dual optimality),

λk εk = 0, (complementary slackness),

λk > 0 (dual feasibility),

εk > 0,
∑
εk = εQL

, (primal feasibility).

Since f ′′k (εk) = 6γk/ε
4
k > 0, f ′k is strictly increasing, and,

interpreted as a function from (0, εQL
) to f ′k((0, εQL

)), in-
vertible. Denote the inverse by f ′k

−1. Since εk > 0, it follows
from the complementary slackness condition that λk = 0,
which, by the dual optimality condition, implies f ′k(εk) = µ,
or equivalently, εk = f ′k

−1
(µ).

From the primal equality constraint,

t∑
k=1

f ′k
−1

(µ) =
t∑

k=1

3

√
−2γk/µ = εQL

,

and hence

µ = − 2

ε3
QL

(
t∑

k=1

3
√
γk

)3

.
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Fig. 4: (a) Trade-off between the Laplace-noise error and the coefficients-
removal error, and (b) minimum MSE due to quantization. Each black
point in (a) corresponds to one of the 33 × 14 possible values of t for
which the Laplace-noise error is minimized. These points constitute the
optimal trade-off. The points in gray, on the other hand, reflect a non-
optimal assignment of ε. In (b), we observe that t = 2 minimizes the
minimum MSE. In this example, εQL

= 1 and Λ is the maximum value
of each attribute within the block.

Substituting the above expression for µ into f ′k
−1

(µ) leads
to the expression of the optimal ε given in the theorem.
Then, the MSE follows by substituting the solution into
ξX̃(ε,O, t). �

A couple of remarks follow from Theorem 1. On the one
hand, the optimal assignment of εQL

conforms to intuition,
as those coefficients with smaller sensitivities are assigned
smaller εO(i). On the other hand, we observe that the MSE
due to the Laplace error is proportional to the inverse of the
square of εQL

. This means, for example, that increasing εQL

from 1 to 2 implies a reduction by 75 percent in MSE.

4.3.2 Choice of t and Transform
For a given transform and O, the trade-off between the
Laplace and the coefficients-removal errors is determined
by t. In Fig. 4, we provide an example of this trade-off in the
case of (i) a 32× 13 input block X corresponding to the first
32 records of the “Census” data set [33]; (ii) the DCT; (iii) a
zig-zag order, and (iv) no prediction.

In this particular example we show that there exists a
value of t minimizing the sum of the two errors above
for the DCT. This subsection aims to compute, in a DP
manner, this value of t and the transform σ ∈ {c, s, h} that
jointly minimize such total error8. Since this computation is
a data-dependent operation, we resort to the exponential
mechanism [34] of DP. Henceforth, we shall denote the
optimal values of those two parameters by t∗ and σ∗. For
notational compactness, we shall use κ to refer to the tuple
of quantization parameters (O, t, σ).

The exponential mechanism requires designing a proper
scoring function. To investigate the impact of this design
decision on our quantizer, we consider a parametrized fam-
ily ωθ of such functions, where θ denotes the exponent of
both the Laplace-noise and the coefficients-removal errors
in ξX̃(ε∗,κ).

8. Note that minimizing E ||X− X̃||2F implies maximizing the coding
gain of the quantizer, since E ||C− C̃||2F = E ||X− X̃||2F from the proof
of Lemma 2.
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Intuitively, the purpose of using these error-based func-
tions is for the exponential mechanism to favor values of t
and σ causing less MSE. Let T and Σ be the r.v.’s modeling
the response of this mechanism, and εQE

the desired level
of protection of said mechanism. Ideally, we would like the
joint PMF pTΣ to be as large as possible for T = t∗ and
Σ = σ∗, and as small as possible for the rest of values. Since
pTΣ(t, σ; θ) is proportional to εQE

ωθ(c,κ)/GS(ωθ(c,κ)),
one might be tempted to choose θ >> 1. However, this
may not be an appropriate choice since the sensitivity of the
corresponding function is likely to increase accordingly.

For conciseness, our analysis only contemplates the cases
θ = 1/2 and θ = 1, and for simplicity the scoring functions
operate with current observed values rather than expected
values. Accordingly, the respective scoring functions are

ω1/2(c,κ) = −
√

2

εQL

(
t∑

k=1

GS(fσcO(k)
)2/3

)3/2

−

√√√√ nd∑
k=t+1

c2O(k),

and

ω1(c,κ) = −ξX̃(ε∗,κ).

Our next result computes upper bounds on the sensi-
tivities of these two functions. Before proceeding, however,
we introduce some notation. Denote by Λ a matrix of
dimension n×d with all rows being ΛT, and by fc the query
function that returns all elements of the transform block c.
Accordingly, define

σ̄ = arg max
σ∈{c,s,h}

‖GS(fσc )‖F.

Furthermore, the absolute value function, when applied to a
matrix, will denote the element-wise absolute value of such
matrix.

Lemma 3 (Sensitivities of ω1/2 and ω1). Under the assumptions
of Lemma 1, and for a given prediction block x̂, the L1-sensitivities
of the scoring functions ω1/2 and ω1 satisfy

(i) GS(ω1/2(c,κ)) 6 ‖GS(f σ̄c )‖F,

(ii) GS(ω1(c,κ)) < 2‖GS(f σ̄c )‖F

√∑
ij max{Λj − x̂ij , x̂ij}2.

Proof: Let x and x′ be two neighboring input blocks,
and c and c′ their corresponding transformed error blocks.
For any r ∈ {1, . . . , n}, denote by xr = (xr1, . . . , xrd) and
x′r = (x′r1, . . . , x

′
rd) the respective values of the different

record in either input block.
Let O be any order. For k ∈ {1, . . . , nd}, let O(k, 1)

and O(k, 2) denote the first and the second index of O,
respectively. Accordingly, define

JO(k)(xr, x
′
r) =

d∑
l=1

anO(k,1),r a
d
O(k,2),l(xrl − x′rl),

where an and ad are transformation matrices of dimensions
n× n and d× d, as specified in (3).

From the definition of L1-sensitivity, we have that

GS(ω1/2(c,κ)) = max
x,x′,κ

∣∣∣∣∣∣
√√√√ nd∑
k=t+1

c2O(k) −

√√√√ nd∑
k=t+1

c′2O(k)

∣∣∣∣∣∣
6 max

x,x′,κ

√√√√ nd∑
k=t+1

(cO(k) − c′O(k))
2 (9)

=

√√√√ max
xr,x

′
r,κ

nd∑
k=t+1

JO(k)(xr, x′r)
2 (10)

6

√√√√max
κ

nd∑
k=t+1

max
xr,x

′
r

JO(k)(xr, x′r)
2 (11)

=

√√√√max
κ

nd∑
k=t+1

(
max
xr,x

′
r

∣∣JO(k)(xr, x′r)
∣∣)2

(12)

=

√√√√max
κ

nd∑
k=t+1

GS(fσcO(k)
)2, (13)

where (9) follows from the reverse triangle inequality and
does not depend on x̂; (10) results from (4) and from the
strict monotonicity of the square root function; (11) follows
from the fact that the maximum of a sum is at most the
sum of maxima; (12) holds since the squaring function
preserves the order of nonnegative numbers; (13) follows
from Lemma 1; and from (13) we immediately verify claim
(i) in the lemma, as it is maximized for t = 0 (and hence for
any O) and σ = σ̄.

To prove the second claim, we use ‖c‖22,t to denote∑nd
k=t+1 c

2
O(k), and ‖c′‖22,t analogously. Note that this nota-

tion uses the Euclidean norm instead of the Frobenius norm
since we interpret c and c′ as vectors, indexed by O.

That being said, observe that∣∣ ‖c‖22,t − ‖c′‖22,t ∣∣ = | ‖c‖2,t − ‖c′‖2,t | (‖c‖2,t + ‖c′‖2,t) ,

and that

max
x,y
{g(x, y)h(x, y)} 6 max

x,y
g(x, y) max

x,y
h(x, y)

for any x, y and any positive real-valued functions g, h.
Accordingly, it follows that

GS(ω1(c,κ)) 6 max
x,x′,κ

| ‖c‖2,t − ‖c′‖2,t | ×

× max
x,x′,κ

‖c‖2,t + ‖c′‖2,t.

We know from claim (i) that the maximum on the left-hand
side is upper bounded by ‖GS(f σ̄c )‖F. On the other hand,
we have that

max
x,x′,κ

‖c‖2,t + ‖c′‖2,t = max
x,x′,σ

‖c‖2 + ‖c′‖2

= max
x,x′
‖x− x̂‖F + ‖x′ − x̂‖F, (14)

where (14) follows from the orthogonality of the three
transforms under consideration. To complete the proof, note
that each summand in (14) is maximized for either xij = Λj
or xij = 0, depending on the largest absolute difference



12

14

12

10

80

6

0.05

0.1

4DCT
DST 2

DHT
0

(a) θ = 1/2.

14

12

10

80

6

0.05

0.1

4DCT
DST 2

DHT
0

(b) θ = 1.

14

12

10

80

6

0.02

0.04

4DCT
DST 2

DHT
0

(c) θ = 1/2.

14

12

10

80

6

0.02

0.04

4DCT
DST 2

DHT
0

(d) θ = 1.

Fig. 5: PMF pTΣ(θ) of the exponential mechanism for θ = 1/2 and
θ = 1. We have used the zig-zag order, εQL

= εQE
= 1, and x̂ = 0.

The input data are an 8 × 8 block corresponding to the last 8 records
and first 8 attributes of the “Census” data set (a,b); and a 48 × 13
block corresponding to the last 48 records and all attributes of the same
data set (c,d). The pairs (t, σ) that minimize ξX̃(ε∗,κ) are (1, c) for the
former block and (2, h) for the latter.

between xij and x̂ij . The strict inequality in claim (ii) is due
to the fact that x and x′ must differ in one record. �

Several conclusions follow from Lemma 3. First, and
most evident, the upper bounds on the sensitivities of ω1/2

and ω1 do not depend on O. The reason lies in that the
bounds are maximized for t = 0, which means all terms
GS(fσcO(k)

)2 in (13) must be added up. Likewise, the upper
bound on the sensitivity of ω1/2 does not hinge on x̂ either,
as the difference cO(k)− c′O(k) in (9) does not. However, this
is not the case for θ = 1, which requires that the prediction
module share x̂ with the quantization module.

In this latter case, we can observe the straightforward
effect that prediction may have on the obtained bound.
Specifically, it is immediate to verify that

1

4
‖Λ‖2F 6

∑
ij

max{Λj − x̂ij , x̂ij}2 6 ‖Λ‖2F,

which indicates that, to reduce the sensitivity bound of ω1

and thus obtain more accurate results from the exponential
mechanism, the predictions x̂ = 0 (right inequality) and
x̂ = x−Λ/2 (left inequality) represent worst and best-case
scenarios. We note that this latter prediction simply reduces
the domain of each attribute to be [0,Λj/2].

Another interesting conclusion is that the sensitivity
results are valid for any set of orthogonal, separable, two-
dimensional transforms, which extends the scope of our se-
lection algorithm to include the vast majority of transform-
coding techniques.

Finally, we observe that squaring the error terms in ω1/2

(i.e., moving from θ = 1/2 to θ = 1) has a significant impact
on L1-sensitivity. While the resulting function may yield
larger scores for (t∗, σ∗) (which may help the exponential
mechanism choose the optimal number of coefficients and
transform), we note its sensitivity may in the worst case
become 2‖Λ‖F times larger than that of ω1/2, which may
lose out the benefits of such an exponentiation.

Despite this latter observation, we would like to stress
that determining which function will cause the least dis-

Algorithm 1: Transform coding and quantization.

Input: An input block X; a prediction block X̂; a
coefficients order O; the respective privacy
parameters εQL

and εQE
of the Laplace and

the exponential mechanisms; the
scoring-function parameter θ

Output: A protected error block Ẽ satisfying
(εQL

+ εQE
)-DP

1 Compute ωθ(C,κ) for the given order, all
t = 0 . . . , nd and all σ ∈ {c, s, h}

2 Calculate the upper bounds9on the L1-sensitivity of
ωθ(C,κ) from Lemma 3

3 Calculate pTΣ(θ), being pTΣ(t, σ; θ) proportional to
exp (εQE

ωθ(c,κ)/2GS(ωθ(c,κ)))
4 Generate a random draw (T,Σ) from pTΣ(θ)
5 Compute C as the Σ transform of E
6 From Theorem 1, compute ε∗ for the selected Σ

transform so that
∑
k ε
∗
O(k) = εQL

7 for k = 1, . . . , T do
8 Generate a random draw L from a zero-mean

Laplace distribution and scale GS(fΣ
cO(k)

)/ε∗O(k)

9 Set C̃O(k) = CO(k) + L
10 end
11 for k = T + 1, . . . , nd do
12 Set C̃O(k) = 0
13 end
14 Compute Ẽ as the inverse Σ transform of C̃

15 return Ẽ.

tortion is not possible a priori, since one would need to
know c in advance. The appropriateness of ω1/2 and ω1

will therefore depend on the actual data. Fig. 5 reflects this
situation by comparing the PMFs pTΣ(θ) for θ = 1/2 and
θ = 1, and for two different input blocks. In Figs. 5(a,b), the
smaller dispersion of θ = 1 and the fact that EpTΣ(1)[T |σ]
is close to t∗ for all σ, makes this function more suitable. In
Figs. 5(c,d), however, θ = 1/2 seems to be more appropriate:
the PMF exhibits a smaller dispersion than θ = 1, and it
attains its maximum value exactly at t∗ = 2 for the three
transforms.

The joint operation of the modules analysis, quantization
and synthesis is summarized in Algorithm 1. The interaction
among the three modules is reflected in lines 5 and 14, where
quantization decides on the transform to be used by the
transform-coding modules. Since quantization also requires
the prediction block to compute GS(ω1(c,κ)), the algorithm
is input X and X̂, rather than just E.

Returning to the notation of block subindexes, we also
note that a decision must be made with regard to the
distribution of the privacy budget εj available for each block
and frame. In Algorithm 1 we make no assumption, apart
from the fact that the budget devoted to the Laplace and to
the exponential mechanism must satisfy εQL

+ εQE
6 εj .

9. The bounds of Lemma 3 are for θ = 1/2 and θ = 1.
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4.4 Prediction

Transform coding is a simple albeit efficient technique for
utilizing statistical dependencies among the records within
a single transform block. For additionally exploiting depen-
dencies among transform blocks within a same or different
frame, image and video coding relies on prediction tech-
niques.

In video compression, there exist two classical prediction
modes, intra-prediction and inter-prediction. In the former
mode, the transform coefficients or original samples of a
transform block are predicted using already coded samples
of neighboring blocks. That is to say, intra-prediction only
leverages statistical dependencies inside frames. However,
as video sequences usually contain significant temporal
redundancies, the additional exploitation of dependencies
among the different frames of a video sequence can notably
enhance coding efficiency. This later approach is referred to
as inter-prediction.

In this work, we propose a hybrid video coding scheme
to protect database streams, meaning that the protection
algorithm is a hybrid of three fundamental techniques,
namely, transform coding for dependencies within blocks,
and the two prediction modes above. However, unlike video
compression, these modes will be applied in a more gen-
eral sense: we shall allow both intra-prediction and inter-
prediction to generate X̂ from reconstructed blocks of the
same frame and from reconstructed blocks of different frames.

Intuitively, the better the future of an input block (mod-
eled as a vector process) is predicted from its past output
blocks and the more redundancy the input block contains,
the less new information is contributed by each successive
block of the database stream [35]; for a fixed privacy budget,
if less information needs to be protected, less distortion is
introduced.

Next we recover the subindex notation for blocks. A
measure of prediction performance is the closed-loop predic-
tion gain ratio [30], which is defined as

Gclp =
E ||Xj ||2F
E ||Ej ||2F

. (15)

From (2), (7), and (15), the overall SNR power ratio of the
DPCM system can be expressed as

SNRsys =
E ||Xj ||2F

E ||Xj − X̃j‖2F
= Gclp GQ. (16)

We shall adopt the most commonly used criterion for the
optimality of a predictor [36], [30], the minimization of the
denominator of (15), which implies the minimization of the
variance and the mean of the prediction error.

We shall denote by Φ the set of modes and types of prediction
of the video coding standards available to the module at
hand. Accordingly, each φ ∈ Φ will represent a unique
configuration of the prediction module, e.g., the intra-mode
of H.264 with horizontal prediction, the latter being the
prediction type.

We shall consider spatial prediction modes10, which oper-
ate with original samples, in contrast to those that estimate

10. Predictions in the sample domain have the advantage that pre-
dictor blocks can be generated for arbitrary prediction directions [35].

Fig. 6: Vertical intra-prediction modes of the standards H.263 (left) and
H.264/MPEG-4 AVC (right). The former estimates X̂j from the column
averages of the previously reproduced block X̂j−1. The latter uses
directly adjacent samples of already protected blocks.

X̂ from transform coefficients. Formally,

X̂j = f(X̃j−1, X̃j−2, . . . , X̃j−π),

where the function f is chosen adequately to generate a
good estimate of X̂j from the π past values of the re-
produced process {Sεi }. Although a variety of “standard”
functions will be considered for intra-prediction in our
evaluation (a couple of examples are shown in Fig. 6), we
shall only contemplate block matching [37] as inter-prediction
technique. In our case, when applying block matching we
will be selecting the reconstructed block that minimizes
the denominator of (16). The reason for restricting to block
matching is that we expect small inter-frame redundancies,
in contrast to video sequences.

4.5 Preprocessing
Recall that a permutation matrix is a square (0, 1)-matrix in
which each row and each column has exactly one entry of
1 and zeros elsewhere. Let Ψ denote the set of permutation
matrices. For any ψ ∈ Ψ, notice that the product ψX is a
permutation of the rows of X.

Informally speaking, the goal of the preprocessing mod-
ule is to find a permutation of the rows of X that helps
the predictor generate a better prediction X̂ of X. Since the
actual X̂ is not available to the preprocessing module at the
time when it is to permute X, the module will be devised
to find the permutation that minimizes the prediction error
for all φ ∈ Φ. We shall see in Sec. 4.6 that this operation is
conducted jointly with the encoder-control module.

The minimization of the prediction error, however, is not
without constraints, since the cost of permuting must be
kept to an acceptable level. In this work, we quantify this
cost with the Spearman’s footrule distance [38]11, given by

F (ψ) = ‖(ψ − in)(1, . . . , n)‖1,
which measures the total element-wise displacement from
the original order, denoted by the identity matrix in.

Formally, for a given set Φ of prediction modes and
types, the preprocessing module is designed to compute the
solution to the optimization problem

min
φ∈Φ
ψ∈Ψ

‖ψX− X̂(φ)‖2F subject to F (ψ) 6 cR, (17)

11. The Spearman’s footrule is the most popular metric to evaluate
distances between permutations.
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which describes the optimal trade-off between prediction
error on the one hand, and on the other permutation or
reordering cost. Intuitively, the larger the maximum accept-
able cost, the smaller the prediction error and vice versa.

Let v,w ∈ Rn×d and z ∈ R be the parameters of an
assignment problem with side constraints (APSC) [39]12. Recall
that the formulation of an APSC in standard form is given
by

min
ψ∈Ψ

∑
ij

vijψij subject to
∑
ij

wijψij 6 z. (18)

Our next results shows the equivalence of the problems (17)
and (18).

Lemma 4. For a fixed φ, the optimization problem (17) is an
APSC.

Proof: For brevity, we write X̂ instead of X̂(φ). Recall
that the Frobenius inner product of two matrices a,b ∈
Rn×d is defined as 〈a,b〉F = tr

(
aTb

)
and induces the cor-

responding Frobenius norm ‖a‖F =
√
〈a,a〉F. Accordingly,

we have that

‖ψX− X̂‖2F = ‖ψX‖2F + ‖X̂‖2F − 2〈X̂,ψX〉F
= tr

(
XTψTψX

)
+ ‖X̂‖2F − 2〈X̂,ψX〉F

= ‖X‖2F + ‖X̂‖2F − 2〈X̂,ψX〉F (19)

= ‖X‖2F + ‖X̂‖2F − 2 tr
(
ψXX̂T

)
, (20)

where (19) is due to the orthogonality of the permutation
matrices, and (20) follows from the invariance of the trace
under cyclic permutations.

Eq. (20) implies that minimizing ‖ψX− X̂‖2F for a given
φ is equivalent to the problem of finding the permutation of
the rows of XX̂T that maximizes the trace. The equivalence
of problems (17) and (18) in terms of their objective func-
tions is verified immediately by noting that (i) the objective
function of Eq. (18) can be recast as the trace ofψvT and (ii) a
problem in which the objective function is to be maximized
can be converted into a minimization problem just by mul-
tiplying v by −1. To check the equivalence of the inequality
constraint functions simply observe that F (ψ) = tr(wψ)
for wij = |i− j|. This completes the proof. �

The strength of recasting (17) as an APSC lies in that it
allows us to resort to efficient methods [39], [40] to compute
the optimal permutation ψ∗. This is of a great practical
relevance as an APSC is NP-complete and our scheme must
satisfy the delay constraint δ, as specified in Definition 3.

4.5.1 Extreme Regions of the Trade-off Plane
Even though powerful methods are available to compute
ψ∗, the fact that (17) is a minimization over all φ ∈ Φ
means we need to solve an APSC for each available pre-
diction mode and type, and each input block. This imposes
an important computational burden on the preprocessing
module and may compromise the fulfillment of the delay
constraint δ. In the special cases when the system is de-
signed to operate at the extreme regions of the trade-off, we
may alleviate this burden as described below.

12. The problem has also been investigated in [40] where it is referred
to as the resource constraint minimum weight assignment problem.

Low Prediction Error. It can be shown [41] that

max
ψ∈Ψ

F (ψ) =

⌊
n2

2

⌋
. (21)

This result implies that if we accept permutation costs larger
than or equal to bn2

/2c, then the optimization problem (17)
becomes an unconstrained linear assignment problem. Opti-
mization problems of this kind can be solved in polynomial
timeO(n4) with the original Hungarian algorithm and more
efficiently with a bunch of algorithms that achieve O(n3).
We refer the reader to [42] for further details on this topic.

Low Reordering Cost. In the case when there are strin-
gent, tight constraints on the permutation cost, intuitively
the feasible set of (17) will mostly include permutations of
nearby records. We contemplate two strategies, S1 and S2,
that exploit this fact for the sake of computational efficiency.

Recall that an assignment problem can be regarded as a
minimum weight perfect matching problem. S1 decomposes
the blocks to be matched (i.e., X and X̂) into blocks of
smaller sizes, and finds the matching of each of those
sub-blocks. More specifically, it computes the solution of r
optimization problems of the form (17), where X and X̂ are
now replaced with Xi and X̂i and denote sub-blocks of size
n/r × d containing the records n(i−1)

r + 1, . . . , n ir of X and
X̂, respectively. Naturally,

∑
i c
i
R = cR.

The strategy S2, on the other hand, tackles the original
problem with a weight matrix that prevents the matching
of records belonging to different sub-blocks. Specifically, we
consider the matrix

wij =

{
|i− j|, if k−1

r n < i, j 6 k
rn for k = 1, . . . , r

∞, otherwise,

which produces the same effect as S1, but without having
to split cR up into the r sub-problems. This is precisely the
reason why the minimum prediction error attained by S1
will never be smaller than that achieved by S2, and also the
reason why S1 may be more efficient than S2.

Fig. 7 shows the performance of S1 and S2, expressed
in relative terms with respect to the original optimization
problem (17). We generated 100 instances of X and X̂
completely at random and computed the average runtime
and prediction error for d = 16, n = 8, 16, 24, 32 and
r = 2. Since we are assuming low reordering costs, the
performance was assessed for values of cR up to 1/5 of
the maximum F (ψ) (see Eq. (21)).

The results show that the proposed strategies may re-
duce the computational burden significantly, with the high-
est reduction being an 80% for n = 24 and cR ' 33.
As for the differences between the two strategies, we note
that S2 performed better than S1 in terms of runtime for
n = 8, while the opposite was observed for n = 24, 32. An
important consideration is that both S1 and S2 may exhibit,
for certain values of n and cR, larger runtimes than those
required to compute (17).

The results also seem to indicate that the price to pay
is relatively small. In our experiments, the minimum error
value was observed to be just 9% larger than that attained
by the original problem. In short, although these results
obviously depend on the data and thus we cannot draw
conclusions on whether which strategy is more appropriate
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Fig. 7: Reduction in execution time and increase of the minimum prediction error provided by the two proposed strategies (S1 and S2), when the
system is designed to operate at low permutation costs cR. The results have been obtained for different block lengths n and for d = 16 and r = 2.

for a given data, with them we show the potential benefits
of operating at the region of low permutation costs.

4.6 Encoder Control
Coding efficiency describes the ability of a video codec to
trade-off bit rate and reconstruction quality [43]. In video
applications one typically wants the best possible recon-
struction quality for a given available bit rate.

A multitude of parameters including coding modes and
intra-prediction modes have to be selected on a per-block
or per-frame basis. These selections determine the coding
efficiency of a generated bitstream and are referred to as
encoder control.

A larger set of coding and prediction modes is only
advantageous in video coding if the reduction in bit rate that
results from the improved prediction and transform coding
outweighs the additional bit rate required for transmitting
the selected modes to the decoder. In the case of database
streams, we have an entirely analogous trade-off. Since such
a selection is a data-dependent operation, re-distributing a
fixed privacy budget to allow one more DP algorithm only
makes sense if a larger set of prediction modes and types
can effectively reduce the overall distortion.

We design the encoder control to decide, on a per block
basis, the prediction mode (i.e., intra or inter) and the specific
prediction type to be used (e.g., average vertical, horizontal).
Consistently with the optimality criterion of the predictor
module, we define the scoring function

κ(x, x̂) = −‖x− x̂(φ)‖2F = −‖e‖2F.

Our next results computes the sensitivity of this function,
which we shall use to design the exponential mechanism
selecting the specific prediction mode and type.

Lemma 5 (Sensitivity of the scoring function for the selection
of the encoding parameters). The L1-sensitivity of the scoring
function κ is GS(κ(x, x̂(φ))) = ‖Λ‖22.

Proof: Let x and x′ be two neighboring input blocks,
and xr = (xr1, . . . , xrd) and x′r = (x′r1, . . . , x

′
rd) the records

in which the two input blocks differ respectively. Direct
application of the definition of L1-sensitivity leads to

GS(κ(x, x̂(φ))) = max
x,x′

x̂,φ

∣∣∣∣∣∣
∑
ij

(xij − x̂ij(φ))2 − (x′ij − x̂ij(φ))2

∣∣∣∣∣∣ .

Note that each of the summands above is maximized when
x̂ij(φ) = x′ij , and that the minimum achievable value of
each summand is zero. Accordingly,

GS(κ(x, x̂(φ))) = max
x,x′

∣∣∣∣∣∣
∑
ij

(xij − x′ij)2

∣∣∣∣∣∣
= max
xr, x

′
r

∣∣∣∣∣∣
d∑
j=1

(xrj − x′rj)2

∣∣∣∣∣∣ ,
where clearly the maximum is attained at the extreme values
of xr and x′r . �

Algorithm 2 shows how the modules preprocessing, en-
coder control and prediction interact to select, in a DP man-
ner, a permutation ψ and a configuration φ that minimize
the prediction error. Specifically, the predictor estimates X̂
for all possible configurations in line 1. All prediction blocks
are then sent to the preprocessing module, which computes
the permutations minimizing each of these blocks, as speci-
fied in (17) (lines 2 to 4). Lastly, the encoder control decides
on the configuration of the predictor and the corresponding
optimal permutation (line 5), which are conveyed to the
predictor and the preprocessing modules, respectively.

By the sequential and parallel composition properties of
DP, it is immediate to verify our DPCM-based protection
method provides ε-DP frames, with ε = εQL

+ εQE
+ εE .

5 EXPERIMENTAL EVALUATION

In this section, we evaluate experimentally the protection
method proposed in Section 4. The aim of this section is
to show that our approach, which builds on hybrid video
encoding techniques to enhance data utility, may in fact
diminish the amount of noise required to attain ε-DP. The
empirical analysis provided in this section has been con-
ducted in its entirety with Matlab 2019b, on a Ryzen 7 1800X
at 4GHz.

5.1 Data Sets
To try to capture the voluminous and continuous charac-
teristics of database streams, our experiments are targeted
toward large datasets.

Our experimental evaluation will use two standardized
data sets, known as “(Very) Large Census” and “Quant For-
est”, which are two of the largest datasets in the community
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Algorithm 2: Preprocessing, encoder control and
prediction.

Input: An input block X; the reconstructed blocks
X̃j−1, X̃j−2, . . . , X̃j−π ; the privacy
parameter εE of the exponential mechanism;
the maximum desirable permutation cost cR

Output: A permutation ψ and a prediction
configuration φ satisfying both εE-DP

1 Compute X̂(φ) for all φ ∈ Φ

2 forall φ ∈ Φ such that X̂(φ) has a least a
non-constant column do

3 Compute ‖E(φ)‖2F as (17) and denote the
minimizer by φ(ψ)

4 end
5 Select φ(ψ) with probability proportional to

exp
(
−εE‖E(φ)‖2F/2‖Λ‖22

)
6 return φ(ψ).

of statistical disclosure control. For brevity, we shall refer to
them as vlCensus and forest, respectively.

The former data set contains 149 642 records and has
13 numerical attributes. It was previously documented and
used in [44], [45], and has been chosen to adhere to the de
facto convention in the area as well as for its large number
of records.

The latter has 581 012 records and is based on the
Forest FCoverType dataset available at the UCI KDD
data repository [46]. Exactly as in [45], [47], we selected
just the real-valued attributes, which reduced the number
from 54 to 10, and for computational reasons we took the
first 150 000 records. In our analysis, all attributes have been
treated as quasi-identifiers and therefore all them have been
the target of protection.

5.2 Baseline Method
As we mentioned in Sec. 2.2.2, only [10] has tackled
the problem of publishing DP database streams in a
continuous manner. However, since that work is limited
to single-attribute databases, evaluating this protection
method against ours is meaningless.

Consequently, we cannot but compare our solution just
with the baseline approach described at the beginning of
Sec. 4. The plain Laplace noise (PLN), as we shall call it,
will add Laplace noise directly to the incoming records,
without introducing delay nor reordering them. Although
it is a rather naive strategy, it will allow us to assess the
benefits of our method and derive worst-case bounds on
distortion.

5.3 Configuration Parameters
Next, we specify the range of configuration parameters used
in our experiments.

5.3.1 Coefficients Order
As explained in Sec.4.3.1, scans are designed following the
empirical evidence that Pr{Cij > 0} is typically decreasing
with i and j. In our experiments we use the zig-zag scan
and the diagonal orders shown in Fig. 3.
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Fig. 8: Quantity ‖GS(f σ̄c )‖F for different block sizes and for the three
transforms under study. From the figure, we note that this quantity
does not vary significantly with the block size.

5.3.2 Intra-Prediction Functions

We use the intra-prediction functions specified in the video
coding standards H.262 — MPEG-2 Video [48], H.263 [49]
and MPEG-4 AVC [50]. This includes DC, horizontal, verti-
cal and diagonal predictions types.

5.3.3 Block Sizes

In real practice, d will be given by the database stream to be
protected, and thus is fixed, whereas n is a parameter of the
scheme and needs to be chosen appropriately.

In Fig. 8, we have computed the quantity ‖GS(f σ̄c )‖F for
different block sizes. This quantity is central to compute the
sensitivities of the scoring functions θ = 1/2 and θ = 1, and
therefore to choose t and σ; hence its importance.

The results have been obtained for Λ = 1, which is
equivalent to dividing each attribute value by its maximum
value and essentially indicate that the specific value of nwill
not have a large impact on the sensitivity of either scoring
function. The number of attributes, however, does have a
greater effect on ‖GS(f σ̄c )‖F, and appears to be roughly
linear with d.

It is worth emphasizing that the transforms shown for
each block size are the ones maximizing the quantity at
hand. In other words, they are the worst choice, among
the three transforms under study, in terms of data distor-
tion. However, as Fig. 8 shows, the differences in terms of
‖GS(f σ̄c )‖F among the DCT, DST and DHT are small.

Although n does not seem to have an impact on the
sensitivities of the scoring functions θ = 1/2 and θ = 1,
it does pose various trade-offs in our DPCM scheme. For
example, the larger n, the larger the number of transformed
coefficients, and the more Laplacian noise will be added
to each of them, but the larger the coding efficiency of
transform coding13 Likewise, the smaller n, the less per-
mutations will be available for the preprocessing module,
and therefore the worse the prediction X̂ of X. In order
to capture the effect of n on the proposed scheme, our
experiments will be conducted for block lengths of 8, 16, 32
and 48 records.

13. The coding efficiency of transform coding typically increases
with the block size. Nonetheless, the potential gains may become
insignificant beyond a certain block size [35].
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Fig. 9: Average distortion versus privacy protection for several values of record delay δ, block size n and maximum allowed reordering cost cR
in the data set vlCensus. The baseline approach and the proposed solution are represented with black and coloured lines and points, respectively.

(a) n = 8. (b) n = 16. (c) n = 32. (d) n = 48.

Fig. 10: Average distortion versus privacy protection for a fixed delay δ = 7 872, several block sizes n and two allowed reordering costs
cR ∈ {1, bn2/2c} in the data set vlCensus. The baseline approach and the proposed solution are represented with black and coloured lines and
points, respectively.

5.3.4 Preprocessing
In those cases when the processing module is to operate
at the extreme regions of the prediction-reordering trade-
off, we shall use the strategies described in Sec. 4.5.1 to
alleviate the computational burden on the module. In the
low-reordering case, we shall employ S1 for n = 8, 16 and
S2 for n = 32, 48. In any case, we shall set a timeout
of 2 seconds for the computation of either the original
problem (17) or the strategies S1 and S2.

5.4 Distortion Metric and Privacy Parameters
We use the SSE to evaluate the impact on distortion caused
by anonymization. The SSE is a measure of overall infor-
mation loss that is frequently employed in the evaluation of
statistical disclosure control methods.

On the other hand, we shall conduct our series of ex-
periments for levels of privacy protection in the interval
ε ∈ [1, 3], which cover the usual range of values observed
in the literature [51], [52], [15], [16], [17]. In this regard, we
shall set εQL

= εQE
= εE = εj/3.

Lastly, note that the sensitivity values derived in Sec-
tion 4 are essentially proportional to the length of the
intervals in which these attributes take values. Since the
attributes of our two data sets are not naturally upper-
bounded, we need to delimit the domain of each attribute.
For the sake of comparison, we follow the methodology de-
scribed in [15], [53], [16], [54] and upper-bound the domain
of an attribute to be 1.5 times the maximum value of this
attribute in the data set.

5.5 Results

First of all, it should be noted that the series of experiments
shown in the sequel have been conducted for the scoring
functions ω1/2 and ω1. However, since the observed differ-
ences are negligible, we just report on the results for one of
them, namely, ω1.

Fig. 9 shows average14 distortion values for ten equally
spaced values of ε within the interval [1, 3]. In our experi-
ments, we set δ = m, which means all records experienced
a delay of m records, that is to say, a frame15; and evalu-
ated the proposed system for four delay-constraint values
(shown in the figure), which account for roughly 0.5%,
3.65%, 6.82% and 10% of the total length of the dataset.
Furthermore, we allowed a reordering cost of half of the
maximum acceptable cost, that is, cR = bn2

/2c/2.
The log-distortion obviously decreases with ε, and does

so in an almost linear way, both in our system (coloured
lines) and in the baseline approach (black lines). In any
of the four subfigures, Figs. 9(a-d), we can see that higher
delays translate into lower distortion. This is not because
there are more record blocks available for inter-prediction or
block matching, as these parameters are fixed. This is simply
because εj is larger, on account of the fact that εj = εm/l
and m = δ. Also, in the process of decreasing distortion, the

14. Given the randomness of the DP mechanisms employed, we used
one hundred repetitions for each combination of system parameters
and averaged all them.

15. Recall that m is the number of records within a frame.
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Fig. 11: Average distortion versus privacy protection for several values of record delay δ, block size n and maximum allowed reordering cost cR
in the data set forest. The baseline approach and the proposed solution are represented with black and coloured lines and points, respectively.
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Fig. 12: Average distortion versus privacy protection for a fixed delay δ = 7 872, several block sizes n and two allowed reordering costs
cR ∈ {1, bn2/2c} in the data set forest. The baseline approach and the proposed solution are represented with black and coloured lines and
points, respectively.

effect of the delay is much more important in our system
than in the baseline approach, essentially because the latter
does not leverage the delay for anything else, other than
increasing εj .

In comparative terms, it may seem that there is not a
large difference in distortion between our solution and the
baseline approach. However, indeed there is: a reduction of
0.3 or 0.4 in log2 SSE in fact represents a relative reduction
of 23.11% or 31.95% in SSE. This is what we observe in
Fig. 9(d): our approach yields 32% less distortion that the
baseline solution for ε = 3, n = 48, δ = 14 928 and
cR = 576. However, for the smallest delay value (δ = 720),
it appears that larger block sizes do not diminish distortion
too much. It should be noted, though, that the observed gain
margins are despite the low values of εj our system operates
with, going approximately from 0.0048 (when δ = 720 and
ε = 1) to 0.2986 (when δ = 14 928 and ε = 3).

For a fixed delay, Fig. 9 shows how the distortion de-
creases with the pair (n, cR). This seems to indicate that
the coding efficiency of transform coding increases with
n (despite the fact that we may have potentially more
coefficients and thus more noise added to them) and/or
that a greater number of permutations available for the
preprocessing module notably improves the prediction X̂
of X.

Fig. 10 clarifies this latter point. Here we show the
distortion for a fixed delay m = 7 872 and two values of cR,
namely, cR = 1 (no reordering allowed) and cR = bn2

/2c
(no constraints on reordering). The results indicate that the

gains due to allowing any reordering are not significant,
which suggests that the block size has a greater impact on
distortion. In short, it seems that, out of the main parameters
controlling the trade-off among distortion, delay, reordering
and privacy, n and δ have a greater effect on distortion than
cR —at least in this dataset.

Fig. 11 shows the same variables of Fig. 9 but for the
data set forest. In general, we can observe a very similar
behaviour than in vlcensus, including the same little
impact of reordering on distortion reduction. There are some
slight differences, however. First, the minimum difference in
distortion between the baseline approach and our scheme,
which is observed for δ = 720, n = 8, cR = 16 and ε = 1), is
0.66%; while in vlcensus this yields 0.078%. And secondly,
the maximum differences in distortion between our solution
and the baseline approach are observed, analogously as in
the data set vlcensus, in Fig. 11(d) and yield 31%.

Fig. 13 shows the average processing time per block we
recorded in the computation of Figs. 9, 10, 11 and 12. We ob-
serve that the 75th percentile for vlcensus is 0.6038, 0.2495,
0.1039, 0.02456 seconds respectively for n = 8, 16, 32, 48
and 0.5997, 0.2141, 0.0991, 0.0214 seconds for forest. We
also notice that the processing time is slightly greater for
the vlcensus data set, which is consistent with its 3 ad-
ditional numerical attributes. In this regard, we would like
to emphasize that the efficiency of our method for large-
dimensional stream databases (i.e., large d) will depend on
the efficiency of the employed transforms. As a matter of
fact, the computational burden on the analysis and synthesis
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Fig. 13: Average processing time per block.

blocks represents, on average, the 41% of the time needed to
protect a block.

6 PREVIOUS WORK ON DIFFERENTIALLY-PRIVATE
TRANSFORM CODING

As described in Secs. 2.2.2 and 5.2, the only work that has
dealt with the problem of publishing DP database streams
is [10]. Nonetheless, we could not compare our approach
with that work experimentally since it just operates with
single-attribute databases and does not allow record up-
dates.

Although to the best of our knowledge there is just this
work, the conceptual approach presented here, however,
shares some similarities with two distinct protection meth-
ods, [55] and [56]. Although none of them are intended for
database streams, for the sake of rigorousness we deem it
appropriate to highlight the main differences between those
two works and ours.

The former work, [55], aims to answer a fixed number of
queries over time-series data under DP. To this end, the au-
thors propose a protection method called sampling pertur-
bation algorithm (SPA) that perturbs the one-dimensional
discrete Fourier transform (DFT) of such query answers. In
particular, the SPA chooses the number of such coefficients
adaptively with the exponential mechanism by sampling
a multidimensional hyperbolic distribution and then per-
turbing them. On the other hand, [56] aims to protect static
histograms with DP. The proposed solution, called enhanced
SPA (ESPA), essentially uses a different scoring function in
the exponential mechanism of the SPA.

First and foremost, we would like to emphasize that SPA
and ESPA are not aimed, nor can be trivially adapted, to
database streams16. Secondly, their fundamental operation
relies merely on a single, one-dimensional transform-coding
scheme and the elimination of certain coefficients; but they
do not address the problem through a hybrid video coding
approach nor interprets the processing of those coefficients
as a quantization step, nor considers prediction, encoding
control or data permutations. Thirdly, [55] and [56] capital-
ize upon the DFT of the original input data, whereas our work
operates with the two-dimensional DCT, DST and Hartley
transforms of the residual signal. Fourthly, our approach

16. Note that [56] does not even address the case of continuous data.

distributes the privacy budget among the transformed co-
efficient in an optimal fashion, so as to minimize the MSE.
Fifthly, we use a family of parameterized scoring functions
in the exponential mechanism to select not only the number
of transform coefficients but also the type of transform.
Finally, our approach leverages the exact sensitivity of those
coefficients, while SPA and ESPA operate with a sensitivity
bound, whose mathematical derivation is flawed.

7 CONCLUSIONS AND FUTURE RESEARCH

With the advent of big-data analytics, complying with
current data-protection frameworks in Europe and some
Western countries has become very challenging. Our work
focuses on the anonymization of database streams (a partic-
ular class of dynamic data), a technique whereby data con-
trollers can legitimately circumvent such legal frameworks.

Among a variety of privacy notions, DP is one of the
most popular among the scientific community working in
data anonymization. In this work, we have tackled the pro-
tection of database streams with DP in the compelling case
when the data controller wishes to publish those streams,
rather than statistics derived from them.

We have proposed an anonymization method that
can publish multiple numerical-attribute, finite database
streams with DP guarantees and provide high protection
as well as high utility in terms of data distortion, delay and
record reordering.

The proposed method, which relies on the DPCM com-
pression scheme, adapts techniques originally intended for
hybrid video encoding, to favor and leverage dependencies
among the blocks of the stream to be protected. In video cod-
ing, the exploitation of statistical dependencies can enhance
coding efficiency and reduce the information contributed
by image blocks and frames. In our context of database
anonymization, we have shown the adapted techniques can
help introduce significant less distortion.

We have designed our method to operate with blocks
of records going through a series of modules analogous to
those of the DPCM scheme, except for the preprocessing
module. The design of our solution has been optimized in
a number of different ways to minimize the MSE incurred
in releasing the synthetized, protected block (instead of the
original one).

Our extensive experimental evaluation demonstrates the
suitability of utilizing hybrid video encoding to publish DP
database streams. For the two data sets under study, we
have shown our method can achieve a relative reduction
of 32% and 31% less distortion in SSE than the baseline
approach for the vlCensus and forest data sets, respec-
tively. Remarkably enough, these results have been obtained
for extremely low values of εj (i.e., for extremely high values
of block protection), in the interval [0.0048, 0.2986].

We have also observed that distortion decreases with
the block size and the maximum acceptable reordering
cost, which suggests that the coding efficiency of transform
coding increases with the former parameter and/or that
a larger number of permutations at preprocessing module
significantly reduces the prediction error. Furthermore, our
experimental results seem to confirm that the block size
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and the delay have a greater effect on distortion than the
maximum acceptable reordering cost.

With this work we have also shown the riveting in-
terplay between the field of information privacy on the
one hand, and on the other the fields of data compression
and video encoding, while bridging the gap between the
respective communities.

Finally, an interesting and necessary avenue for fu-
ture research is to develop anonymization algorithms for
database streams containing categorical attributes.
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