
Distributed Discovery of User Handles with Privacy
Thomas Paul and Marius Hornung and Thorsten Strufe

Peer-to-Peer Networking Group
TU Darmstadt

[thomas.paul, mhornung, strufe][at]rbg.informatik.tu-darmstadt.de

Abstract—Decentralized Online Social Networks (DOSN) seek
to increase their users’ privacy by removing centralized data
storage and control. Their lack of usability and competitive
features has severely hindered their success. Even a privacy
preserving user discovery, which seems paramount for a social
networking service, so far has not been implemented. Aiming at a
hybrid architecture of decentralized servers, as it is suggested by
the currently most successful DOSN Diaspora amongst others, we
suggest a distributed discovery of users. Our discovery mecha-
nism protects privacy of users and does not create vulnerabilities
to mass collections of profiles or SPAM.

The scheme adapts known techniques like DHT, indirection,
and proof of knowledge, to meet the service specific require-
ments. A general implementation for a popular XMPP server
furthermore gives proof of our concept and represents a first
step towards constructing a reliable distributed social networking
service with user discovery on decentralized servers, without
leaking any information about its users.

I. INTRODUCTION

User trust in Online Social Networks (OSN) is waning
as a result of public discussions about provider-side security
problems and mass surveillance of users. Decentralized Online
Social Networks (DOSN) aim to provide social networking
functionality without requiring a (centralized) OSN provider.
Thus there is no need in DOSN to trust an omni-potent
provider for both: to efficiently protect user data against
malicious actors as well as to abstain from misusing or secretly
sharing the available information about their users.

However, Narayanan et al. [1] doubt that federated or
distributed social networks are a promising alternative because
of technical as well as economical disadvantages. We take the
following two facts as supportive motivations for our work:
First, that technical issues can be solved since large OSN like
Facebook are technically distributed and do not run on a single
machine (but are controlled by one authority). Second, that the
email system, which is also a realization of the architecture
that we want to improve, is widely adopted.

Decentralization removes any single entity with complete
knowledge about users as well as about the social graph
connecting them. However, several appealing functions in
today’s OSN, like Facebook, require knowledge about user
data and the social graph. These functions include not only
advanced inference or recommendation features, but even
paramount functions like discovering other users. Even the
most popular DOSN Diaspora consequently relies on out-of-
band communication for exchanging user handles, which are
required to connect to other users [2].

Existing technology does not seem to offer appropriate
solutions to the privacy preserving user discovery problem:

1) Creating a central index requires a trusted party, or
leak information about the participants. Beyond privacy
concerns, economical reasons prevent its setup in a
decentralized system, as it would cause costs that are
unlikely to be paid for by the users, in the current
Internet ecosystem.

2) Classical P2P search assumes a public, distributed search
index, which at least partially is stored on and forwarded
by presumably untrusted nodes [3], and commonly even
spreads information by replicating its content.

3) Public key encryption with keyword search (PEKS) [4]
requires possession of the cipher, and hence a central-
ized, encrypted index, which is unviable as mentioned
above. Applying PEKS to a DHT does not seem viable
since the cipher isn’t known to the requesting party and
hence can not easily be addressed and discovered.

4) Secret database querying approaches do not solve the
problem of avoiding to build a centralized database that
contains user-linkable information.

In this work, we propose a mechanism that adds the
functionality of user handle discovery in RFC 8221 based
systems, to make a step towards providing usable DOSN
with a competitive feature set, while maintaining the privacy
of their users. This implies that no information that can be
linked to any participating individual may be leaked by the
scheme. Because of potential abuse of profile discovery, the
scheme must also prevent mass collection of profiles and
their identifiers to avoid SPAM or other types of illegitimate
messaging.

To tackle this issue, we propose a solution that divides the
service into three separate parts:

• The collection of distributed information about servers
that host profiles which potentially include a specific user,
identified by separate user attributes.

• A privacy preserving negotiation protocol to prove knowl-
edge about the sought user.

• The provision of ephemeral handles with limited validity,
which allow for a single message within limited time.

The scheme is applicable to arbitrary hybrid DOSN ar-
chitectures. These consist of decentralized servers that are
equal by design and operated by diverse parties, and which
are selected by participants to host their profiles. Hybrid

1https://www.ietf.org/rfc/rfc0822.txt, accessed: 18 th of February 2014

978-1-4799-3512-3/14/$31.00 ©2014 IEEE

Globecom 2014 - Symposium on Selected Areas in Communications: GC14 SAC Social Networks

2947Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:02:25 UTC from IEEE Xplore. Restrictions apply.

DOSN architectures circumvent the implications of leveraging
unreliable resources (P2P) while still operating without a
central authority. Examples for this type of approaches are
Diaspora, Vis-a-Vis [5], Vegas [6] and SoNet [7]. Without
global knowledge about other servers, a common choice of
identifying users and their profiles is to use addresses of
the form [user]@[host], following RFC 822. The host part
uniquely identifies the server (usually using its DNS name),
and the user part the respective participant registered on the
server.

The first step towards building our search scheme is to
map all atomic user properties on their registering servers. A
DHT spanning all participating servers then is used to register
the user properties under their server address. Hence, there
is no link between the attributes that describe an individual
and the user herself, but only a link to her server. Her server
consequently can be discovered, when searching for the user,
and contacted for further negotiation.

The contacted server then can verify the validity of the
discovery request. Demonstrated with knowledge about the
target subject (in a privacy preserving manner), the server can
decide whether to create a valid temporary handle (Search_ID)
for contacting the subject once, or to create an invalid one,
pointing nowhere. The participants hence have the liberty to
define a selected set (or subset) of knowledge that is needed
to discover a valid temporary handle for their profile.

Our contribution in this paper is to adapt well-known
techniques like DHTs, indirection schemes and proof of
knowledge algorithms in an innovative and beneficial way to
allow finding user handles in decentralized communication
systems without facilitating SPAM. In contrast to previous
solutions that leverage lookup services, we avoid to build a
search index that can be maliciously exploited. The rest of the
paper defines the requirements and the protocol, explains our
design, gives a detailed evaluation and finally summarizes the
main contributions.

II. REQUIREMENTS

The central objective is to enable users in a distributed
client-server environment to find user handles of communi-
cation partners without knowledge about the partner’s respon-
sible server. State of the art services are not widely adopted
(e.g. public e-mail address catalogs) because of their potential
facilitation of copious undesired messaging. Our scheme hence
needs to meet the following requirements:

1) The service must not jeopardize the privacy of any par-
ticipant, and hence no linkable data may be published.

2) The discovery scheme has to be scalable to handle large
numbers of users (comparable with popular OSN) and
servers.

3) The search protocol must be resistant to illegitimate user
discovery. Permanent addresses, or user handles, may be
retrieved through the system only upon explicit approval
by the related individual.

4) The search protocol must be resistant to unsolicited mass
communication. It specifically has to prevent uninformed

mass address retrieval.
5) Supporting requirements 3 and 4, the scheme shall

merely provide ephemeral alias addresses for single use
only.

III. SYSTEM OVERVIEW

This Section describes the system design and illustrates
the solution space. We explain the mechanism to discover
the server that is responsible for a targeted identifier, while
meeting requirements 1 and 2 and subsequently specifying
the registration process of profile attributes. To address re-
quirement 3, we introduce an access control mechanism.
Requirement 4 is fulfilled by restricting the served identifiers
to be valid within a short term (minute scale). Requirement 5
is met by introducing an ephemeral user handle.

A. Discovery Mechanism

As a consequence of requirement 1 as well as the absence
of a central authority in our system environment, we can
neither build a central index to locate user handles, nor use a
distributed lookup service which publishes or replicates data
to discover them. Since the servers in our scenario are equal in
functionality, a potential search request sender does not have
a specific location to start the search procedure. Furthermore,
privacy preserving negotiation for demonstrating knowledge
about the search target to distinguish between legitimate and
illegitimate requests is an expensive procedure (with respect
to communication overhead).

Thus, the basic idea is to first locate servers which poten-
tially host the sought user handle and subsequently perform
the negotiation with a small set of servers. We use an efficient
discovery mechanism which allows us to register tuples of
attributes and server addresses for that purpose. Promising
candidates are DHTs (e.g. CHORD [8], CAN [9]), since they
are scalable and churn resistant.

Our approach implies the need to register a tuple of every
field (just once per attribute value no matter how often it is
occurring on the server) of the user profile (e.g. name, city)
and the server address at the lookup service by its own.

Thus, a request to the DHT returns a list of servers,
matching the field content. The servers which are part of every
single list are candidates which may be the server hosting
the desired contact. We will call this list the candidate list
for the rest of the paper. This list can then be condensed by
intersecting candidate lists for several search requests while
increasing the detail of the search. But it terminally may yield
more than a single server.

To mitigate the issue of index poisoning, the tuple of server
address and the piece of search content can be signed by the
server. Registering this signature together with the tuple allows
us to validate whether the registration of an item is originated
by the legitimate server or not.

B. Access Control

Each user defines a set or range of knowledge that is
necessary to discover herself. A requesting individual then has

Globecom 2014 - Symposium on Selected Areas in Communications: GC14 SAC Social Networks

2948Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:02:25 UTC from IEEE Xplore. Restrictions apply.

to demonstrate at least this minimum knowledge about the
sought subject in order to get a valid Search_ID. We define
a privacy preserving negotiation protocol which allows the
search request sender to prove knowledge about the search
target without disclosing the query to anybody but the servers,
sharing the same knowledge. This prevents the untrusted nodes
in the lookup service from being able to learn valid attribute
combinations from search requests.

C. Ephemeral User Handles

Each provided valid Search_ID can only be used for a single
message and just for a short period of time. We decided not
to provide the long term valid addresses (IDs) of the subject
to fulfill the misuse and access control requirements. Being
contacted via short term identifier, the sought user handle
owner may decide whether to reply or not on the message
for disclosing the permanent user handle.

IV. PROTOCOL

This section gives a detailed description of our protocol,
which consists of the two parts of user registration and dis-
covery. It relies on a lookup service (DHT), which is adopted
by the communication servers (Diaspora, SMTP, XMPP, etc.)
of all participating users.

A. Definitions

This subsection defines terms for later use in the formal pro-
tocol description: Servers are nodes, participating in the DHT
as well as providing the underlying communication service
(e.g. e-mail). Search Fields are tuples of properties comprising
of a field name and its content, which describe a detectable
individual (field “First Name” containing “Bob”, for instance).
Search fields are filled by participants in order to describe
themselves. The Client is a part of the software installation.
It is installed on the user’s machine and is responsible for
communicating with the assigned server. The Ephemeral User
Handle is a string, which is a valid address for just one
message in a short predefined period. It consists of a random
string which is not guessable.

B. User Registration

An individual user Ā, registered at the responsible server A,
fills m of n search fields f1, f2...fm, describing its profile with
strings a1, a2...am. Ā’s client then sends the data to the server
A, which in turn registers itself for each of the descriptors
(Algorithm 1).

C. User Discovery

A requesting user Ā describes the target subject
by providing as many specified search fields
({(a1, f1), (a2, f2), . . . , (aj , fj)}) as possible. Ā’s client
subsequently submits the entered information to its responsible
server A, which in turn retrieves a list of candidate servers,
which are responsible for users matching any of the specified
Search Fields (Algorithm 2).

Having a list of servers with potential matches (the length
is depending on the popularity and distribution of the search

Algorithm 1: Registering Search Fields

Data: m of n search fields f1, f2...fm of a user profile
with strings a1, a2...am as their values

Result: m in the lookup service registered search fields

foreach (fi, ai) do
ãi = concatenation(fi, ai);
h1 = hash(ãi) ;
register h1 at the DHT

end

Algorithm 2: Search algorithm, conducted by the
searcher’s hosting server

Data: search fields f1, f2...fj with contents a1, a2...aj
Result: List of servers which potentially host the target

subject

foreach (fi, ai) do
ãi = concatenation(fi, ai);
h1 = hash(ãi) ;
request h1 at the DHT ;
receive list ali of servers, assigned to ai;

end
candidate_List =

⋂n
i=1 a

l
i

items), the user can submit requests for receiving short term
IDs to servers from the candidate list. These requests contain
all available knowledge about the target individual. Servers
receiving this request check if a matching individual is regis-
tered and if this individual’s access control policy is met by the
request, i.o.w. whether the presented knowledge is sufficient
to generate a Search_ID.

The search protocol is depicted in Fig. 1, with the following
variables:

j number of filled out search fields in the search form
at the first step

k number of hosts having at least one user matching
one search field

l number of hosts having at least one user matching
all search fields; the value is the sum of all hosts
resulting from the buildIntersectionList-operation

m number of filled out search fields in the search form
for a specific host (second step)

n number of matching users on the specific server
p sum of all public profile fields

D. Privacy Preserving Negotiation Algorithm

In case an adversary runs a server and registers popular data
items (e.g. popular names) for advertising herself to become
part of the candidate list of a user’s request, she could misuse
the negotiation process for learning more attributes about
users. We counter this potential data leakage by suggesting the
following negotiation protocol, consisting of two algorithms:
one on the server side and one on the searcher’s client side.

In this protocol, we propose to define a set of obligatory
base attributes: name, first name and city. Our experiments

Globecom 2014 - Symposium on Selected Areas in Communications: GC14 SAC Social Networks

2949Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:02:25 UTC from IEEE Xplore. Restrictions apply.

alt
ā:Ā a:A s:S c:Chord x:X0,…,Xj y:Y

[j > 0]
startSearch(j) searchservers/get(j)

findsuccessor/get
findsuccessor/result[i < j]

searchhost/get
searchhost/result(k)

buildIntersectionList([searchhost/result(k)]0,
…, [searchhost/result(k)]j-1)

lsearchservers/result(l)presentServerLIst(l)

startSearchOnServer(m)

presentResult(n, p)

searchonserver/get(m)

searchonserver/result(n, p)

searchonserver/get(m)
searchonserver/result(n, p)

startSearchOnServer(m)
error

startSearch(j)
error

[default]

[i < j]

alt
[m ≧ j]

[default]

loop

loop

Fig. 1. Sequence diagram of the message flow during the search phase. A represents the user’s Client and S the user-assigned server. CHORD illustrates
the lookup service. Xn...Xn−1 are the servers, selected during the findSuccessor operation. j, k, l, m, n and p are the numbers of the variable parts of each
message.

(Section V) show that this combination is a good choice for a
real world user identifier. Furthermore, the entropy of a single
attribute is small and an attacker could guess the existence of
combinations of popular attributes. Our attribute concatenation
(Algorithm 3) increases the number of possible combinations
per server to the total number of first names multiplied by
the number of last names and the number of cities. Hashing
the concatenated strings keeps them secret but still allows
conducting pattern matching operations on the server.

Please note that if a user realizes attackers guessing the
combinations due to the fact of a popular name and big
city etc., she can easily define the minimum knowledge to
contain more attributes (e.g. interests, employer) and thus
make guessing harder.

Algorithm 3: Client-side negotiation algorithm

Data: m of n search fields f1, f2...fm of a user profile
with strings a1, a2...am as their values and the
Server_ID of the request recipient

Result: Request message content for a temporal user
handle

base = concatenation(a1...a3, Server_ID);
P (ai) = powerset(ai), i > 3;
foreach (x in P (ai)) do

concx = concatenation(base, x);
knowledgeproofx = hash(concx);
add knowledgeproofx to the knowledgeprooflist;

end
add hash(base) to the knowledgeprooflist;
Request message = knowledgeprooflist

We expect the server to have a table of user handles and
the corresponding hashes, related to those users which are

registered at this location. The hashes are computed accord-
ing to the user defined minimum knowledge. Subsequently,
the server algorithm runs a local lookup for the hashes in
the “knowledgeprooflist” (the hashed representation of the
requester’s knowledge and a result of Algorithm 3) from the
negotiation request. If a match happens, the request is replied
with a valid temporal user handle, otherwise with an invalid
one.

V. EVALUATION

With respect to our requirements, we evaluate the function-
ality, the mentioned privacy properties and the scalability of
our search protocol in this Section. Regarding functionality,
we answer the following questions: Is it possible to find
persons with three to five attributes (e.g. name, first name, city,
employer) in the real world? Is the approach feasible to achieve
this? Our privacy discussion answers the questions whether the
protocol leaks private data. Regarding scalability we discuss:
How many servers need to be contacted for negotiating with
them? How much data is exchanged by applying the protocol?

A. Functionality

The only real world data collections we are aware of and
which are suitable for estimating the search success of a
public user handle search algorithm are phone number search
engines2,3, social networks and web search engines (like
Google). Thus, we used them for estimating the amount of
data which is necessary to identify a person.

Our experiments with the authors as an example, showed
that the first name and the last name as search strings reduce
the result list to the length of two (Thorsten Strufe) and seven
(Marius Hornung). Thomas Paul is a common name, leading
to the necessity of taking the city information into account.

2http://www.dastelefonbuch.de/
3http://www.teleauskunft.de/

Globecom 2014 - Symposium on Selected Areas in Communications: GC14 SAC Social Networks

2950Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:02:25 UTC from IEEE Xplore. Restrictions apply.

Further real world experiments in existing user handle
lookup services (see above) with about two dozens of popular
German names showed that the combination of first name,
last name and city usually is sufficient to find the subject.
We argue that this sample size is big enough, since drawing
two dozen strangers is unlikely and a search service is still
useful even if a negligible minority of subjects could not be
uniquely identified, just using commonly available knowledge
(e.g. city, name, employer). The answer to the evaluation
question whether our profile description is applicable hence
is true.

To show the feasibility of our scheme, we introduce an
example scenario: We assume the server landscape to have a
similar structure like the e-mail system or the XMPP system
because of both: a lack of reliable user and usage quantifica-
tions from DOSN and the similarity of the architectures. That
means for our scenario to assume some big hubs with plenty
of users, providing public-available services (e.g. Google) as
well as a significant number of smaller servers4,5 maintained
by companies or non-profit organizations like universities.
Algorithm 2 builds on the assumption that not every server
has registered every search string (e.g. name) which occurs in
the system. We assume that the server candidate list usually
contains the big hubs, but just a small fraction of small servers.

We make the following assumptions for our scenario:
• The lookup service (e.g. DHT) works well in low-

churn environments like ours, since this concept is well
known, evaluated in previous work and tested within our
prototype in a small scale

• The server popularity has the following properties which
reflect the situation in the e-mail provider landscape:

– 10 big hubs (like Google or Microsoft in the e-mail
environment) concentrate the majority of users on
them,

– 10,000 smaller (about 100 users in average) servers
exist, maintained by companies, organizations and
communities,

– 10,000 different values of each: the first names, last
names and cities are known in the system.

The worst case assumption, is to assume that every first
name, last name and city name occurs in each of the big
hubs. Subsequently, applying our algorithms in our scenario
would mean to have a candidate list, consisting of lass than 110
servers (out of 10,010) before starting the negotiating process.

The affordability of the negotiation process is shown in
Section V-C. Contacting those (less than) 110 servers results
in a list of ephemeral user handles where the overwhelming
majority is pointing nowhere. Sending a contact request with
a short reasoning for the contact request may motivate the
desired search target to answer the request and hence disclose
the permanent user handle. Please note, as shown before, the
combination of first name, last name and city describes a
person very well. Thus it is not likely to receive a plenty of

4http://www.mailradar.com/mailstat/
5http://www.zdnet.com/jabber-numbers-overtake-icq-3039117160/

contact requests, addressed to the wrong subject. Nevertheless
in case of suffering a lot of requests, caused by e.g. a popular
name in a big city, the burden of proving knowledge can be
raised by adding more fields to the knowledge proof.

The presented search algorithm mitigates the problem that
the peers, responsible for the most popular keys, become a
bottleneck (Zipf distribution of the request popularity [10],
[11]), by saving only the server’s address once per popular
attribute instance (e.g. popular name on one server) instead of
saving each instance of the user attribute separately. Further-
more, our approach circumvents the need to store replicas of
fully qualified user descriptions at other peers in the network,
as proposed in [12] or [13].

B. Privacy and Security

This Section contains some privacy and security contem-
plations of the proposed protocol as well as some further
improvements which address security concerns beyond the
scope of the system design to mitigate service availability
attacks. The scope of this part of the evaluation is to answer
the question whether the use of the search scheme can be
harmful for the user or server authority. Leaking data could
affect user’s privacy, coming with negative side effects far
beyond the search functionality.

Attacking additional functionality just brings back the actual
status before the search protocol was available. Hence, we
consider attacks on the search functionality not to be an
obstacle for adding this search protocol to a communication
system. We thus, assume an attacker which aims to leverage
the search scheme to illegitimately access private information.
Since we trust friends not to publish user handles, arbitrary
nodes in the network, except the own server or trusted friends,
can be attacker.

The proposed search protocol does not include actions,
sending any personal related information to anybody but the
server, the user is assigned to. Other nodes, like the nodes in
the DHT, just learn that a user named “Bob” is assigned to
server A. The link between the public string “Bob” and the
ID of the subject, which was sought after, has to be made by
the server A. Hence we meet the requirement 1.

Even blind testing of attribute combinations does not give
reliable information about single users, since knowing that
a user with first name “Bob” and a user with a last name
“Brown” exist, does not yield concluding that “Bob Brown”
exists. The first name item and the last name item may belong
to different subjects, using the same server. Armknecht et al.
[14] show that the entropy of the user attributes is high enough
to make guessing (dictionary attacks) unfeasible as soon as a
combination of attributes is used as a key.

Requirements 3 and 4 are met by introducing the short
term valid ID, since a requesting node needs to negotiate for
receiving this ID, which is invalidated after a short time.

Since the design of our protocol is based on the assumption
that attackers have less knowledge about the search target
than legitimate request senders, this mechanism is not able
to prevent well informed attackers from getting a short term

Globecom 2014 - Symposium on Selected Areas in Communications: GC14 SAC Social Networks

2951Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:02:25 UTC from IEEE Xplore. Restrictions apply.

valid ID. We argue that this is not an obstacle, since popular
OSN like Facebook allow strangers to send friend requests
as well. To mitigate that issue, we suggest to allow just one
short term valid ID per requester ID. Please note that the well
informed attacker still does not have access to the permanent
user handle (e.g. email address) until she gets a reply message.

Two types of index poisoning could be possible. An attacker
could register plenty of entries for another server to increase
its load due to being involved in unsuccessful search requests.
Furthermore, an attacker could create fake (sybil) IDs to
register plenty of fake targets aiming at hiding the real search
target. The first poisoning attack can easily be tackled by
signing the DHT entries, the latter one can be mitigated by
reputation schemes and tackled by abolishing the zero cost
environment.

Further security limitations are the following:
• Attackers can learn users not to be part of the system if

one of her attributes is not popular by sending a request
to the DHT. If the server list is empty, the search target
is most probably not registered.

• The number of participating servers can be estimated by
requesting popular attributes and calculating the super set
of all server list items.

• The popularity of servers can be estimated by evaluating
the relative frequency of servers being part of the candi-
date list resulting from arbitrary requests to the DHT.

To summarize: Users can register to the search infrastruc-
ture without fearing to publish their user handles or any
other private information. However, the functionality of the
search scheme can be attacked like in other distributed search
schemes as well. We argue that the presented limitations are
not an obstacle for this scheme to be adopted in DOSN or
XMPP systems.

C. Communication and Computational Costs

Compared with centralized approaches for finding user
handles, more communication is necessary, since the searcher
does not know both: the user handle as well as the server which
has that knowledge. Thus, the search procedure contains the
additional step for finding the responsible server. Nevertheless,
our requirement 2 is that a search scheme must not become
prohibitively expensive in terms of network and system load.
In the latter of this Section, we show that the network load is
not a prohibitive issue.

Having a given search field distribution (e.g. names and city
inhabitants) and user-server affiliation frequency distribution,
the final network load per search request thus depends on the
efficiency of the chosen lookup service, the complexity of the
search request, the number of participating servers and the
number of system users (and hence are registering attributes).

The load increases less than linear with a growing number of
users, since duplicate attribute instances per server do not have
an impact. A growing number of servers has a linear impact
as well as the length of the search field content. Nonlinear
growth of load is caused by the privacy preserving negotiation
algorithm while calculating the power set of the atomic parts of

the search request. This is given by 2n−2 (minus two, because
of the concatenation of three fields) where n is the number
of search fields. We argue that this is not an issue (Figure
2), since we expect the number of search fields to be usually
small (less than 6).

Giving a second example scenario, we assume the profile
attribute length, the profile field name length, the sender
address length, the host name length and the key length to be
255 bytes (=255 characters) each, which represents the worst
case. Based on our prototype, we assume a Chord DHT to be
the lookup service. Furthermore we assume users to fill three
search fields, a fraction of 30% of the servers having at least
one user with one matching attribute field and a fraction of 5%
of these servers having at least one user hosting a matching
user profile. Subsequently, we assume that 2 users on each
server in the candidate list are matching all search fields, and
each of these users filled out 5 profile fields.

 0

 5

 10

 15

 20

 25

 30

 4 6 8 10 12 14 16 18 20

ne
tw

or
k

lo
ad

 in
 M

By
te

number of search fields

V

Fig. 2. Impact of growing number of search fields on our example scenario;
1,000 servers

Since we assume the maximum field lengths (URL restric-
tions) in our example and do not expect users to use more
than three to five attributes per average search operation in
reality, we assume our scenario to be a rather worse case.
As a consequence of this scenario evaluation, we argue that
the resource consumption is not an obstacle for deploying this
protocol and thus the privacy is preserved at an affordable
amount of costs. Hence we meet our requirement 2.

To prove the functionality of our scheme in a testbed, we
implemented a proof-of-concept prototype by adding compo-
nents to the XMPP server Tigase. The choice was driven by
the openness of the latter as well as by the fact that motivating
existing XMPP users to help us testing is easier than motivat-
ing people to join Diaspora* for that purpose. Creating enough
load to the system for exploring its performance limits, was
done by a small script for sending random requests.

Beside the result that the idea works well, we learned that
the performance is sufficient not to be prohibitive even though
we did no performance optimizations in our code and used
comparably slow machines (2.2 GHZ AMD cores). Assuming
that users may want to find in average a dozen friends in a

Globecom 2014 - Symposium on Selected Areas in Communications: GC14 SAC Social Networks

2952Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:02:25 UTC from IEEE Xplore. Restrictions apply.

month, this server setup can handle more than 50,000 users at
one core without further code optimizations.

VI. RELATED WORK

The authors of Vis-a-Vis[5] suggested an DOSN approach
based on virtual individual servers. Every user runs her own
virtual server for profile data availability and interaction han-
dling. A hierarchical scheme for finding user handles and
group management is proposed, realized by spanning a DHT
across the individual servers. Data which is used to charac-
terize users in the search scheme is defined as “searchable”
which means to be public. We consider this search scheme to
be the closest to our proposed solution but it does does not
meet our privacy requirements.

To the best of our knowledge, no current work exploits the
properties of decentralized server architectures for finding user
handles with privacy. Several approaches implement client-
server based DOSN like e.g. Diaspora* and Jabbix6, but they
do not provide any integrated comprehensive user discovery.
XMPP addresses can globally be found by using central user
directories, based on XEP-0055 (Jabber Search), but there are
“no security features or concerns related to this proposal”7.
Server-local JID (Jabber Identifier) search is possible with the
“Net::XMPP::JID - XMPP JID Module” 8 but again comes
without tackling privacy and SPAM concerns.

The situation for finding e-mail addresses is even worse.
Attempts to provide system-wide search functionalities did not
succeed. For example, the leading German telecommunication
company took the e-mail directory9 (public, without privacy
protection) offline. Hence, finding e-mail addresses causes the
need for side channel communication via e.g. web pages or
social networking sites.

Since finding user handles is a subproblem of finding
arbitrary resources, general purpose search approaches are
feasible for finding user handles as well. Common ground
of these approaches (e.g. keyword search [15], XPath [16],
ROAR [3], SplitQuest [17] or Bubblestorm [18]) is the public-
accessibility of the search strings. Thus, these solutions do not
meet our requirements 1, 3 and 4. Our solution, in contrast
allows for the privacy preserving publication and discovery of
users, which we achieve by two cascaded indirection schemes.

VII. CONCLUSION

This paper presents the first approach that allows to find user
handles in systems of decentralized client-server architectures,
without disclosing any data that is linked to the permanent
user handle (ID or address). The novelty is to avoid building
a user-linkable search index. This is realized by cutting the
search strings into atomic parts, which are linked to the server
handle instead of the user handle and separately registered
at the lookup service. The reunification of the search results
is done locally and the subsequent access to a temporal user

6https://jabbix.com/
7http://xmpp.org/extensions/xep-0055.html
8http://search.cpan.org/dist/Net-XMPP/lib/Net/XMPP/JID.pm
9http://www.email-verzeichnis.de/

handle is limited to requests, which demonstrate a minimum
knowledge about the search target. The permanent ID (e.g.
email address) is not published by this mechanisms until the
user is manually responding the request and thus confirming
the contact to be desired.

It hence renders offline or other side channel communication
for the purpose of discovering users unnecessary and thus
increases the usability of email, or jabber-like IM services.
It additionally represents a step towards creating a usable
distributed social networking service, based on decentralized
servers since finding friends is a core functionality in today’s
OSN.

Our extensive evaluation includes the functionality, the pri-
vacy and security as well as the communication costs, coming
with the usage of our approach. A prototype implementation
based on XMPP, extending the popular jabber server Tigase,
underlines feasibility and scalability of the system.

VIII. ACKNOWLEDGEMENTS

This work has been [co-]funded by the German Research
Foundation(DFG) in the Collaborative Research Center (SFB)
1053 "MAKI - Multi-Mechanism-Adaptation for the Future
Internet".

REFERENCES

[1] A. Narayanan and V. Toubiana, “A Critical Look at Decentralized
Personal Data Architectures,” arXiv preprint arXiv: . . . , 2012. [Online].
Available: http://arxiv.org/abs/1202.4503

[2] S. Schulz and T. Strufe, “Diaspora: Practical attacks for profile discovery
and deletion,” in ICC, 2013.

[3] C. Raiciu et al., “Roar: Increasing the flexibility and performance of
distributed search,” in SIGCOMM, 2009.

[4] D. Boneh et al., “Public key encryption with keyword search,” in
Advances in Cryptology-Eurocrypt, 2004.

[5] A. Shakimov et al., “Vis-a-vis: Privacy-preserving online social network-
ing via virtual individual servers,” in COMSNETS, 2011.

[6] M. Durr et al., “Vegas – a secure and privacy-preserving peer-to-peer
online social network,” in SocialCom, 2012.

[7] L. Schwittmann et al., “Sonet–privacy and replication in federated online
social networks,” in HotPOST, 2013.

[8] I. Stoica et al., “Chord: A scalable peer-to-peer lookup service for
internet applications,” in ACM SIGCOMM, 2001.

[9] S. Ratnasamy et al., “A scalable content-addressable network,” in ACM
SIGCOMM, 2001.

[10] K. P. Gummadi et al., “Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload,” in SOSP, 2003.

[11] L. Breslau et al., “Web caching and zipf-like distributions: Evidence and
implications,” in INFOCOM, 1999.

[12] L.-A. Cutillo et al., “Safebook: a privacy preserving online social
network leveraging on real-life trust,” IEEE Communications Magazine,
2009.

[13] K. Rzadca et al., “Replica placement in p2p storage: Complexity and
game theoretic analyses,” in IEEE ICDCS, 2010.

[14] F. Armknecht et al., “Protecting Public OSN Posts from Unintended
Access,” in ICC 2014.

[15] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword searching,”
in Middleware, 2003.

[16] A. Bonifati et al., “Xpath lookup queries in p2p networks,” in WIDM,
2004.

[17] P. Lopes and R. A. Ferreira, “Splitquest: controlled and exhaustive search
in peer-to-peer networks,” in IPTPS, 2010.

[18] C. Leng, “Bubblestorm: Replication, updates, and consistency in ren-
dezvous information systems,” Ph.D. dissertation, Technische Universität
Darmstadt, 2012.

Globecom 2014 - Symposium on Selected Areas in Communications: GC14 SAC Social Networks

2953Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:02:25 UTC from IEEE Xplore. Restrictions apply.

