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Abstract—State-of-the-art approaches in gait analysis usually
rely on one isolated tracking system, generating insufficient
data for complex use cases such as sports, rehabilitation, and
MedTech. We address the opportunity to comprehensively under-
stand human motion by a novel data model combining several
motion-tracking methods. The model aggregates pose estimation
by captured videos and EMG and EIT sensor data synchronously
to gain insights into muscle activities. Our demonstration with
biceps curl and sitting/standing pose generates time-synchronous
data and delivers insights into our experiment’s usability, advan-
tages, and challenges.

Index Terms—sensor system, smart device, pervasive comput-
ing, bioinformatics

I. INTRODUCTION

Motion capturing is essential because it enables the analysis
of human gait for several application domains. On the road to-
wards human-in-the-loop computing, more pervasive solutions
are needed that correlate motion with its originators to make
humans and machines cooperate. One can exploit gait analysis
to improve the training and performance of sports athletes.
During the summer Olympics of 2020, motion capturing
gained special attention, where Intel introduced its 3DAT A.I.
to generate 3D models from athletes and extract information
like velocity, acceleration, and biomechanics. Increasing com-
puting and virtual storage capacities create opportunities for
entirely new approaches to human motion analysis. Indeed
a plethora of systems was developed recently. Nevertheless,
state-of-the-art solutions do not meet the requirements to
generate data for precise motion profiling.

Current gait analysis methods use wearables with sensors,
mainly IMU and occasionally floor sensors, for delivering
velocity, speed, and orientation data. However, those methods
suffer from measurement inaccuracies, mainly derived from
a lack of exact data due to an enormous approximation
process in IMUs [1]. For supporting the healing process, the
rehabilitation domain also tests motion capturing devices, such
as DoktorKinnect1, SilverFit2, or Corehab Riablo3. However,
the data quality has been insufficient or even faces severe
problems with error rates bigger than 10° when analysing

1https://doctorkinetic.com/
2https://silverfit.com/de/
3https://www.corehab.it/en/riablo-bf/

human limbs. The lack of analytical precision using multiple
EMG-wearables further reduces the utility of this setup [2].

In the sports domain, requirements go beyond accurately
capturing gait and superficially mimicking the appearance
of motions. Instead, it requires correlating motion with the
performance of individuals. Many sports scientists started
questioning the “gold standard” approach, in which current
high performers are used as examples for creating training
methods, which can increase the risk of injuries and hinder
training efficiency. Demand is increasing towards an athlete-
centered approach that considers the specific physical prereq-
uisite. For example, exploiting adaptive and smart artificial
limbs, is continuously increasing [3]. The approach is sup-
ported by the advances in computing in prosthetics. New data
models and technical ways of training support seem to be an
exciting path for this goal [4]. Nevertheless, technology in
sports mainly focuses on measuring quantity (speed, distance,
repetitions), not the quality of movements. Due to low data
density, current solutions suffer from limitations regarding
the accuracy of measurements and oversimplification of data
interpretation. Moreover, those systems are not yet capable of
motion prediction, as they only capture the motion itself, not
why it is happening. Bringing together analytic methods of
movement and muscle activity in a time-based context holds
potential for a completely new understanding and evaluation of
movement quality and also for the support and even regaining
of motor skills [5].

We introduce MPER (Motion Profiling Experiment and
Research system) to investigate the plausibility of developing
a new data model to describe and profile human motion.
MPER combines time-series-based tracking of multiple or-
thogonal motion-capturing systems. Specifically, MPER com-
bines measurements of the muscle and tissue state via Electri-
cal Impedance Tomography (EIT), muscle activation via elec-
tromyography (EMG), and the pose of the muscle skeleton via
stereo-camera-based motion capturing. Early results indicate
the high utility of our approach regarding the meaningfulness
of the produced dataset and indicate promising outcomes for
further investigation.
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II. SYSTEM DESIGN AND IMPLEMENTATION

Our starting point for the data model is various means of
measuring human motion and activities. Besides tracking the
skeleton pose, we deem it valuable to capture the correspond-
ing muscle activity as well.

The overall system consists of three main building blocks:
Wearable, camera, and PC (cmp. Fig. 1). The wearable,
incorporating 8-32 electrodes in textile fabric, senses currents
and voltages as input modalities and converts them into
digital signals. A microcontroller takes care of multiplexing,
amplifying, and filtering before relaying this data to the output
interfaces. We added USB for wired and Bluetooth LE for
wireless connections. While the wearable hard-, firm- and
software are self-designed and built, the camera system is
developed and used on the NVIDIA Jetson platform. It offers
the needed RGB camera-input interfaces and GPU power to
perform pose-estimation through machine learning inference.
Of the numerous output interfaces provided by Jetson, we use
USB and WiFi connections.

Fig. 1: System Architecture: wearable sleeve with EIT/EMG sensors
and camera system on Nvidia Jetson Nano sending collected dato to
computing unit

A. Sensor capturing subsystem with EIT, EMG and wearable

1) Electrical Impedance Tomography (EIT): uses electrode
measurements on body parts to inferencing electrical conduc-
tivity, permittivity, and impedance to generate an image of the
internal conductivity. It is, therefore, a non-invasive method of
generating a tomographic image. EIT is a relatively safe and
low-cost method that generates fast and easily collectible real-
time data. EIT can hence be used as a mobile measurement
unit for changes in muscle functionality and tissue monitoring.
[6] EIT has already shown its clinical use for lung-function
imaging, detection of small bleeds in the brain, early detection
of breast cancer, gastric emptying detection, and distribution
of ventilation among COVID-19-patients [7]. In MPER we use
an EIT system that consists of a circuit board and strap with
eight electrodes. A circuit board and software are capable of
using up to 32 electrodes.

2) Electromyography (EMG): To measure the muscle ac-
tion potential, we are using EMG. That helps us see when
a specific muscle group starts to contract. The technology
is widely adopted in medical diagnostics, so we wanted to
include it in our data model. Measured activation peaks give

additional information, which can improve the analysis of
the electrical impedance tomograms. We use two electrodes
attached to the skin surface to measure the potential differences
between those two. The analog input signal gain gets amplified
and filtered to reduce noise while persisting information. The
resulting voltage amplitudes concerning time get traced and
later visualized.

3) Wearable: To get the necessary analog signals for EIT
and EMG, we have to ensure a reliable fixation of the
electrodes on the skin. A state-of-the-art approach would
have been self-adhesive electrodes. However, this solution
introduces several disadvantages. We need at least eight elec-
trodes to monitor one limb. The tomograms also require equal
spacing between them to improve the measurements. Placing
individual electrodes would take much setup time, and still,
the attachment of the electrodes would be very fragile. To
conduct field measurements, we needed to develop a more
robust and reliable solution that is easy to set up. It also has to
scale since we do not only monitor single but multiple limbs.
Textile solutions (sleeves) lend themselves to this application
for several reasons. Stretching the textile (stretchable woven
fabric - 81% PA, 10%PES, 9%EL) yields an even distribution
even given different circumferences of, for example, the upper
arm. That facilitates simpler re-use with different subjects.
The electrodes (stainless steel snap fasteners) are always at
the same distance from each other in this case. Furthermore,
the electrode and supply line components can directly be
integrated into the sleeve, resulting in an easy-to-handle overall
system. Another advantage of the design is that the sleeve and
its components are washable. That ensures hygiene throughout
several measurement set-ups for applications close to the body.

B. Video Capturing Subsystem

We use two stereo 8MP cameras combined with the
NVIDIA Jetson Nano for motion capturing. A computer vision
algorithm processes each video, and the calculated landmarks
get connected and rendered. The generated output consists of
pose coordinates and the rendered visual overlay. Regarding
the systems ”in-the-field”-use case, the pose estimation algo-
rithm is optimized for the low need for computation power and
energy consumption. Based on the AlexNet [8] architecture,
a regression function is trained to estimate the human pose.
The initial stage outputs the coarse body pose within the two-
staged CNN, improved by the subsequent refinement stage.
The neural network was trained on the LSP and FLIC dataset
as the first proof of concept.

C. Data processing and visualization

The third system component is the dashboard application
running on a PC. The software for measurement, processing,
and visualization is based on the open-source projects pyEIT
and OpenEIT. Image reconstruction is achieved with the
Jacobian algorithm. The transmitted data of the wearables
and camera device gets collected in a JSON file, if needed,
processed, and eventually visualized in a data monitoring
dashboard. The dashboard itself is a simple python script.
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Fig. 2: Demo system - left: EIT/EMG wearable strap with 8 elec-
trodes, right: Nvidia Jetson Nano with dual camera pose estimation

It runs a basic GUI built with tkinter and reads in a JSON
trace file. A scroll bar is used to navigate the data points
corresponding to the timestamp. EIT and EMG graphs are
generated using matplotlib.

III. DEMONSTRATION

Our MPER demo originates from several experiments and
consists of two steps (cmp. Fig. 2. Step 1 uses the wearable
to capture the muscle activity and the camera system to
generate the pose estimation and store the traces. Step 2
post-processes these traces: we generate graphs and visualize
them for analysis inside a desktop dashboard (cmp. Fig. 3).
The wearable device gets attached to one of the limbs of
the volunteer corresponding to one of the two experiments
currently at hand. The camera is positioned so that the whole
body is in the field of view of the camera. The volunteer then
performs the following two motions:

1) Motion 1 (Biceps curl): We attach the wearable to one
of the upper arms of the volunteer. The volunteer performs a
biceps curl with a resistance band. During this action, multiple
muscle groups are doing their work. The traces will show the
flexion of the biceps and extension of the triceps.

2) Motion 2 (Sitting/getting up from a chair): We attach
the wearable to one of the upper legs of the volunteer. The
volunteer sits on a chair, relaxes, and then stands up abruptly.
This fast change of overall posture aims to depict the deltas
between the resting and performing muscles parallel to the
activation curves.

The data captured by the devices get collected and stored
within Jetson. The currently implemented EIT image recon-
struction algorithms generate tomograms at a rate of 2FPS
for real-time monitoring. In order to enable more continuous
time series analysis, the traced data is post-processed and
gets replayed in the dashboard application. Pose-estimation
(video), muscle activation graphs (EMG), and tomograms
(EIT) show data-related correlations between muscle activity
and the resulting skeleton movement in a timely context. We
visualize the different working muscle groups of experiment 1
and the peaking muscle activation of experiment 2, such as in
Fig. 3. Especially the compound EMG and EIT data provides
more substantial insights on the interplay of whole muscle
groups than EMG measurements alone. The wearable and

Fig. 3: Dashboard GUI - left: motion capturing after pose estimation,
right: EIT muscle profile and EMG muscle activation measurement

its integrated electrodes provide an adjustable measurement
environment as well.

IV. CONCLUSION

MPER demonstrates the ability to collect and combine
various movement data into a shared, temporal data model.
That enables an accurate description of human motion without
limitations to any specific measurement method. The vast
amount of fast and easy data to capture opens up extensive
opportunities for various machine learning approaches and
generates comprehensive novel insights. Despite the early
stage of development of the system, the insights gathered in
our first trials are very promising. Unbound by lab environ-
ments, the system’s mobility can apply to outdoor activities.
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