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Abstract—Automated accounts affect political discourse in
online social networks and therefore pose a threat to public
opinion. They manipulate the regular flow of discussions by, for
example, spreading false news, polluting content, or changing
the popularity of users/content. Meanwhile, 56% of online social
network users express concern about online false news. Therefore,
reliable detection of automated accounts, among other things, is
crucial for protecting political discourse in our society. However,
the task is complex and challenging. Recent studies show that
state-of-the-art bot detection algorithms have severe generaliza-
tion problems.
In this paper, we study features for reliable generalized iden-
tification of bot behavior on Twitter. Therefore, we propose
an ensemble model that combines multiple neural network
architectures. In a preprocessing step, we vectorize tweet texts
using BERTweet. Exploiting behavioral features, the model then
uncovers patterns in the metadata via a feed-forward and a
convolutional component and incorporates the vectorized tweet
texts via a recurrent unit. Extensive Leave-One-Botnet-Out
(LOBO) evaluations on 20 real-world bot data sets show state-of-
the-art performance in all experiments and outperform related
approaches in average and peak performance.

Index Terms—Bot detection, Deep learning, Online social
networks, Twitter

I. INTRODUCTION

Democracy derives from the Greek words dēmos (people)
and kratos (rule). In contrast to forms of government where a
single person or a small group holds power, democracy means
rule of the people. Its foundation, the public opinion, is its
greatest strength and most vulnerable part at the same time.

Inevitably, people’s opinions must encompass more than
what they know and what they experience/observe. The opin-
ions are thus based on imagination and what others report.

This work in part was supported by the German Research Foundation (DFG,
Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence Strategy
– EXC 2050/1 – Project ID 390696704 – Cluster of Excellence ”Centre for
Tactile Internet with Human-in-the-Loop” (CeTI) of Technische Universität
Dresden and by funding of the Helmholtz Association through the KASTEL
Security Research Labs (HGF Topic 46.23).

Therefore, information from outside the horizon of our ob-
servations is essential, influencing our actions. However, it
is often suppressed by censorship or source protection, or
difficult to access due to physical and social barriers. Nonethe-
less, the information from beyond people’s reach and how
we assimilate it are an essential part of the foundation of
democracy.

Information distribution saw three main developments, the
inventions of newspapers, the Web, and online social networks.
While newspapers opened a constant and reliable window to
the outside world, the Web promised the democratization of
news and online social networks (OSNs) brought us a step
closer to it. Today, the costs of distributing or consuming
information are close to negligible. Each evolution lowered
the threshold of social and physical barriers and significantly
increased news coverage and -perspectives. In consequence, it
theoretically strengthened democracies.

Today, we live in a world of a sheer unlimited amount
of information, perspectives, and opinions. In theory, we
have technologically reached a near-perfect setting for
democratic societies. Yet, while we have seen these massive
developments in information distribution, we also observe
increasingly complex difficulties in evaluating them. With
each invention, new challenges concerning the public opinion
arose.

A decade ago, the rise of Facebook marked the beginning
of the era of the social web. Today, online social networks
(OSNs), such as Facebook, Instagram, YouTube, and Twitter,
are attracting enormous attention and have a nearly ubiquitous
reach. Unfortunately, while we recognized the potential of
online social platforms during times of political turmoil around
the world, similar problems surfaced in everyday life as before.

After initial praise, research began to highlight the potential
negative impact on democracies [1]. Some of the studies
focused on automated accounts. According to these, bots are
used to spread political propaganda, manipulate discussions, or
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influence the popularity of users/content, among other things
[2], [3], [4]. In particular, the influence of malicious bots
on political opinion-forming and political discussions poses
a threat to democratic societies.

Today, on average, 56% of OSN users are concerned about
online false news [5]. While false news is predominantly cre-
ated by human authors [6], natural language processing (NLP)
is catching up. GROVER, a language processing model based
on the architecture of GPT-21 outputs automatically generated
text that is more trustworthy than human-written false news
[7]. These results suggest that the automatic generation of
trustworthy propaganda on a large scale is within reach.

While both humans and bots are more likely to spread
false news than factual news (cf. Vosoughi et al. [8]), bots
significantly accelerate the spread of false news. Shao et al.
[2] reported how bots target influential users via replies and
mentions, reinforcing the early stage of extended spread.

Thus, in recent years, research and society have recognized
that bots play a key role in the context of malicious behavior
in OSNs. In the face of reported election meddling2, reliable
detection of automated accounts is an essential building block
for healthy public opinion.

So, what is the state-of-the-art in social bot detection? In
many analyses, scientists resort to heuristics. Often, suspended
accounts are interpreted as bots. However, a recent study by
Majo et al. [9] reports that less than 1% of the suspended
accounts were suspected or potential bots. In line with other
research, they found that suspended accounts pursued specific
polarizing political agendas.

Taking a look at other fields that rely on reliable bot
detection (e.g., social science), we see that the ‘Botometer’ is
the go-to choice [10]. While often used by scientists, research
shows how limited this approach is [10], [11]. Regarding
Botometer, Twitter remarked that binary judgments have real
potential to poison our public discourse.3

So, general bot detection seems to be an unsolved problem.
But what is the issue? The detection of known bot types
can be solved with a labeled data set and a state-of-the-
art classification approach. However, while the authors of
Botometer report about near-perfect detection performances
[12], Echeverria et al. [11] argue that the established evaluation
methods are rigged and, thus, reported performance results
are misleading. When the goal is to distinguish between
automated and manual accounts, the detection performance
regarding known bot types may be interesting but is not a
reliable statement of the detection rate of automated accounts
in general. Additionally, this approach leads to an arms race
between development and detection [13].

While Echeverria et al. [11] proposed a new evaluation
scheme to measure the detection performance of unknown bot

1openai.com/blog/better-language-models/
2https://reut.rs/3AovisG
3https://blog.twitter.com/en us/topics/company/2020/bot-or-not

types, we lack an approach for reliable detection of these types
of bots.

In this paper, we contribute to the discussion on social bot
detection with a novel approach for generic bot detection.
Recent bot detection algorithms [12], [14] are optimized based
on collected and labeled data sets of bot- and benign accounts.
These models are thus trained and tested on the same pool of
bots.

Echeverria et al. [11] emphasized that these approaches
do not generalize. They overfit due to a feature selection
process that focuses on the best combination of features for a
given data set. As a result, they often include information that
exploits artifacts in the data, which reduces generalization to
other types of bots.

In this paper, we focus on the detection of unknown bot
types. To detect unknown bots and break the arms race, we
have to shift to general bot detection approaches. We pose the
following question:

RQ: Is it possible to define/identify generic bot behavior that
enables generalized bot detection on Twitter?

Therefore, we assume that bot behavior manifests itself in
the form of patterns in aggregated activity data and consider
only behavioral characteristics. We ignore information that
only exploits artifacts of specific bot types in the data (e.g.,
username length or profile description), although this can
improve performance in detecting specific bot families.

To achieve the best possible generalization, we use an
ensemble of neural networks that filter different aspects of the
available information. To measure and compare the perfor-
mance and generalization capabilities of our approach, we use
the evaluation strategy and data sets proposed and published in
[11]. The results of extensive evaluations of Twitter data sets
show that our model significantly outperforms the Botometer
in terms of accuracy and stability, and generalizes therefore
significantly more to new, previously unknown bot families.

II. RELATED WORK

We start by looking at the current approaches to bot
detection. Early approaches examined spam-related topics on
the social web. Benevenuto et al. [15] collected a data set of
Twitter usage. They manually labeled users as spammers or
non-spammers and proposed an SVM classifier for detection.

To help human users understand who they are communi-
cating with, Chu et al. [16] developed a model for identi-
fying accounts as human, bot, or cyborg (i.e., bot-assisted
human or human-assisted bot). Their approach consisted of
a four-component model that combined entropy and machine
learning-based information with account characteristics into a
final decision-maker component.

To make social bot detectors available for the general
public, Davis et al. [12] launched the Botometer (former
BotOrNot) service in 2014. The free social bot assessment
service uses more than 1000 features.

Then, in 2017, Cresci et al. [13] reported a new type of bot,
called social bots. Empirical studies suggested that humans
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and state-of-the-art detection approaches performed poorly
in detecting these new bots because they closely mimicked
benign user behavior. Research, therefore, examined the larger
context and highlighted another promising approach to the
task: collective behavior detection.

In-depth analyses of the cybercriminal ecosystem on social
web platforms provided detailed information about the activ-
ities and scale of criminal accounts on Twitter and Facebook
[17], [18], [19]. The researchers recognized that coordinated
campaigns often operate through the same set of accounts.
Therefore, in cooperation with Facebook [20], Renren [21],
or YouTube [22], researchers proposed models that leverage
detailed data on social network account activities. These mod-
els detect coordinated behavior patterns caused by malicious
campaigning on the platforms.

For example, Chavoshi et al. [23] assumed that humans
are not able to be highly synchronized over a long period.
Therefore, they proposed an activity correlation model that
does not require labeled data.

However, recent work has identified serious limitations
of studies across the discipline [11], [24]. Echeverria et al.
[11], for one, discussed the established evaluation scheme
for bot detection approaches. They emphasized the lack of
generalization when approaches are trained and tested on the
same pool of bot data. Therefore, they proposed a Leave-One-
Botnet-Out evaluation strategy (LOBO). Based on a collection
of real-world data sets, the model measures the generalization
capability of approaches by running tests on held-out bot
types, i.e., bot types that were ignored during optimization.
The results of the Botometer algorithm, e.g., suggest that mod-
ern approaches that use metadata do indeed fail in detecting
new types of bots.

Vargas et al. [24] on the other, challenged the assumption
that humans do not act in a highly synchronized manner.
They showed that coordination is indeed not uncommon in
Twitter communities. With a high detection rate for malicious
coordination, 46% of legitimate coordinated activity was mis-
classified.

In this work, we, therefore, investigate whether generalized
bot detection based on account activities rather than coordi-
nated campaigns can achieve high detection rates in previously
unknown bot families.

III. DESIGNING A GENERAL BOT DETECTOR

We can divide most bot detection models into two general
groups. One uses the content and metadata of individual
accounts on social networks [11], [12], [25]. The other uses
coordinated activities in the network [20], [21], [22]. Recent
studies have shown that the basic assumptions underlying co-
ordinated behavior approaches may be flawed [24]. Therefore,
we focus on the behavior of each account and ignore the
coordinated behavior. However, Echeverria et al. [11] recently
reported serious generalization problems with account-based
metadata approaches. The introduction of variations in bot

signatures – similar to encountering instances of new types
– led to poor performance.

In our work, focused on unknown bots, we reconsider
bot detection. We assume that the intentions of malicious
activities leave detectable traces in the data. Therefore, we
focus on metadata and ignore features that do not contain
behavioral information. In particular, we ignore information
that exploits artifacts of specific bot types. To measure the
detection performance of unknown bots and potentially un-
cover generalization problems, we use the Leave-One-Botnet-
Out (LOBO) evaluation strategy proposed by Echeverria et al.
[11].

A. Behavioral Features

Our model distills the data to identify characteristic patterns
of behavior. We rely on similar metadata to related approaches,
but disregard features that do not contain information about
the activity. Examples include account name length or profile
descriptions.

We represent behavior by a set of 33 aggregated user-,
content-, and response-centric features (see Table I). The user-
centric data provide a general overview of an account, such
as its overall lifetime, the number of Tweets published, or the
number of friends and followers. It also contains information
summarizing user activity by breaking down the total number
of published Tweets into the number of Tweets, retweets,
replies, and quotes. Content-centric information provides more
details about an account’s tweet activity. The data includes
statistics about the content of Tweets, such as # of mentions
shared, hashtags, or URLs. It also consists of a representation
of an account’s average Tweet (e.g., its Ø length or the Ø
mentions, hashtags, and URLs). In this context, we define
domain diversity as the number of unique hosts normalized to
the total number of URLs. Finally, response-centric features
contain information about the response to an account’s activity.
We measure response by the number of retweets, replies, and
favorites an account or its average Tweet receives. In what
follows, we refer to these features as metadata.

In addition, we consider the published Tweets. Therefore,
we convert the raw Tweets into numerical vectors through
tokenization and a BERT model. BERT, Bidirectional Encoder
Representations from Transformers [26], is a sequence trans-
duction model that replaces the recurrent layers with multi-
headed self-attention and represents the state-of-the-art for
various NLP tasks. Transformers can be trained much faster
than recurrent or convolutional neural networks. The variant
we use for our experiments, BERTweet [27], is pre-trained
based on English Tweets.

B. Model Architecture

In addition to feature selection, model architecture also
plays a crucial role in abstraction. We chose a standard feed-
forward neural network (FFNN) and a convolutional neural
network (CNN) as candidates for processing the metadata.
The latter is because it is capable of highlighting certain
feature combinations. The candidates for text processing were
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TABLE I: List of feature-sets used in our studies; User centric: a collection of statistics on the tweeting behavior of a user; Content centric:
statistics on the content of a users’ Tweets combined with a machine-readable summary of the content; Response-centric: statistics of how
others reacted towards the content of an account.

Categories Features

User-centric # Tweets, Lifetime, Ø Duration (Tweets), # Statuses, # Friends, # Followers, # Favorites, # Listings
↪→ Tweet-behavior # Original Tweets, # Retweets, # Replies, # Quotes

Ratio of Tweets, -Retweets, -Replies, -Quotes

Content-centric # Mentions, # Hashtags, # URLs, # Domains
↪→ Mean-Tweet Ø Tweet-length, Ø Mentions, Ø Hashtags, Ø URLs, Domaindiversity, Ø Pictures, Ø Geo-locations
↪→ Text BERTweet (vectorized Tweets)

Response-centric # retweeted Tweets, # received Replies, # favorited Tweets,
Ø retweeted Tweets, Ø received Replies, Ø favorited Tweets

Fig. 1: Architecture of the proposed model; Meta-data is processed by a CNN and FFN separately; vectorized Tweets are run through an
RNN; the outputs are combined by a final feed-forward unit.

a standard recurrent neural network (RNN) and a long short-
term memory RNN (LSTM). We found that the metadata
performance of different architectures varied depending on
the bot types tested. Therefore, we assume that they provide
different generalizations of the data. For texts, the simple
RNN consistently performed better than the more sophisticated
LSTM. Overall, we obtained the highest average and peak
performance by combining the different metadata approaches
with the RNN to form an ensemble model of neural networks.
Figure 1 shows the final architecture.

The resulting model consists of (1) an FFNN, (2) a CNN,
and (3) an RNN component combined by a final FFNN.
Here, each of the 3 components processes the provided data
and outputs a summary, i.e., a numerical vector. Depending
on the architecture (FFNN vs. CNN), the model appears to
take into account different aspects of the data.

Metadata is processed by an FFNN and a CNN in a
normalized and standardized form. The FFNN component
consists of 9 fully-connected layers arranged in a funnel shape.

The 33-dimensional input vector (metadata) is connected with
the first, 8192-dimensional (213) network layer. Accordingly,
the layer sizes are {213, 212, . . . , 25}, resulting in an 32-
dimensional output vector.

In the CNN framework, the 33-dimensional input data
is extended to 1024 dimensions using a linear layer. The
convolutional network consists of a single 1D-convolutional
layer with 30 output channels and a kernel size of 3. This
is followed by a 1D-MaxPool layer, also with a size of 3.
The output of the 30 channels is flattened and passed through
a linear component-layer normalization combination. The
length of the resulting output vector is 32.

Tweet texts are processed by an RNN. To obtain numerical
vectors, Tweet texts are pre-processed with a transformer
model. BERTweet transforms each Tweet into a 768-
dimensional numerical vector. Then, a single RNN unit
processes all transformed Tweets (768 × #Tweets) from a
user and returns a 16-dimensional vector (final state of the
RNN).
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Combined are the three components by a final FFNN. Thus,
we concatenate the outputs of the experts. The 80-dimensional
(32 FFNN + 32 CNN + 16 RNN) input is fed into a 256-
dimensional (28) network layer. We arranged the hidden layers
in a funnel shape, with layer sizes {28, 27, . . . , 24}. A final
linear layer (16 to 2) and a softmax unit give the final result.

IV. EXPERIMENTS

In this section, we report evaluation results focusing on
whether it is possible to define/identify generic bot behavior
to enable generalized bot detection? To this end, we com-
pare our model to state-of-the-art algorithms to evaluate its
generalization capabilities. We use the model proposed by
Echeverria et al. [11] and the popular Botometer as baselines.
The evaluations are performed according to the LOBO scheme
with balanced data sets. In addition to comparing with state-
of-the-art approaches, we investigate the performance of our
model in more detail, i.e., considering additional metrics and
using performance progression results.

A. Evaluation Methodology: Leave-One-Botnet-Out

We are interested in measuring the detection performance
in the context of variations in the signatures of different bot
types. These variations can lead to poor performance when
encountering instances of new types of bots. By using a
metadata set consisting of different real bots, such a scenario
can be simulated.

1) Methodology: While previous approaches used the same
data basis for optimization and evaluation, Leave-One-Botnet-
Out (LOBO) [11] relies on a collection of different real-world
bot data sets. Bot types range from traditional- to social spam
bots, to honeypot bots, to bots that attack individuals. The
evaluation process, which is similar to cross-validation in its
approach, then proceeds as follows: We optimize a model
based on a training set with data samples from all but one bot
type, augmented by an equal number of samples of benign
users. Performance is measured on a data set consisting of
samples of the withheld bot type balanced with benign user
samples. We repeat the process for all bot types.

In addition, Echeverria et al. [11] proposed a sub-sampling
of bot data to ensure that each known bot type is represented
with the same number of data samples during training. Real-
izing that one does not always have the advantage of a large
bot data corpus, they set the sample size to 500 (C500) and
excluded all bot data with less than 500 samples from the
evaluations.

We use their evaluation method, with minor adjustments:
While we follow their strategy of excluding data of bot types
with less than 500 samples for training, we still include them
in the measurement of detection performance.

2) Data: The subsequent evaluations use data from 20
real-world data sets. The different data sets contain bot types,
ranging from political bots, phishing bots, content polluters,
or fake followers to silent accounts. An overview can be

found in Table II.

The metadata set was published by Echeverria et al. [11]
and contains content from various bot data sets. Some of
these are from research [13], [28], [29], while others were
reported by journalists who fell victim to a botnet attack.
The data is supplemented by an equal number of benign
user samples. Each sample includes information on the user
profile and published Tweets.

Spambots range from the simplest bot type (TSB) to sophis-
ticated social spambots (SSB) that mimic real user behavior.
The TSB data sets consist mainly of bots used for traditional
spam campaigns (TSB1, TSB2), with two of them (TSB3,
TSB4) specifically spreading job offers.

SSB records contain accounts that mimic the behavior of
real users, which makes bots more difficult to detect. Here,
SSB1 consists of spammers of paid apps for mobile devices,
while others (SSB2) retweet content from an Italian politician
and (SSB3) promote products on Amazon.

All data sets (TSB, SSB) were previously used by Cresci
et al. [13] and Echeverria et al. [11].

Fake-follower bot types consist of accounts that can be
purchased by customers to follow their accounts to push
them in visibility. The corresponding data sets contain
fake followers from different services (fastfollowerz (FSF),
intertwitter (INT), and twittertechnology (TWT). These types
of accounts can be identified by synchronized behavior, but
are very difficult to detect by behavioral analysis. For more
information see Cresci et al. [30].

Attack-bots are Twitter accounts that participated in an
attack on two journalists, Brian Krebs and Ben Nimmo
(Krebs, Nimmo), in 2017. The journalists logged and
published a list of the Twitter accounts involved4.

Campaign-bots are bots detected by a bot detection service
(DeBot) [23], [31]. The service provides daily reports on bot
activity, focusing on warped correlation in Tweet timings
of different accounts. Echeverria et al. [11] used the API
to query over 700 000 accounts that were identified as bots.
Therefore, the data set represents a potentially noisy sample
as it is based on real detection results.

Mixed-bots contain data sets that were labeled by humans
or were captured by honeypots (Darpa [4]). Thus, they may
contain different types of bots. The different manually labeled
bot accounts are grouped by the size of their followings:

B1k → follower counts between 900 and 1 100.
B100k → follower counts between 90 000 and 110 000.
B1M → follower counts between 900 000 and 1 000 000.
B10M → follower counts over 9 000 000.

4https://krebsonsecurity.com/tag/twitter-bots/
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TABLE II: Overview of the data sets, information on their size,
whether they were used for the Botometer optimization, and how
they are used in our experiments (Train/Test).

Name Size Boto Tr Te

Social Spambots 1 (SSB1) 551 ✓ ✓ ✓
Social Spambots 2 (SSB2) 3 320 ✓ ✓ ✓
Social Spambots 3 (SSB3) 458 ✓ × ✓

Traditional Spambots 1 (TSB1) 872 ✓ ✓ ✓
Traditional Spambots 2 (TSB2) 1 ✓ × ✓
Traditional Spambots 3 (TSB3) 283 ✓ × ✓
Traditional Spambots 4 (TSB4) 977 ✓ ✓ ✓

Fake-followers FSF 33 ✓ × ✓
Fake-followers INT 64 ✓ × ✓
Fake-followers TWT 624 ✓ ✓ ✓

Human Annotated 1k (B1k) 387 ✓ × ✓
Human Annotated 100k (B100k) 534 ✓ ✓ ✓
Human Annotated 1M (B1M) 229 ✓ × ✓
Human Annotated 10M (B10M) 26 ✓ × ✓

Darpa 2 521 × ✓ ✓
Attack on Brian Krebs (Krebs) 728 × ✓ ✓
Attack on Ben Nimmo (Nimmo) 1 558 × ✓ ✓

StarWars Bots 357 000 × ✓ ✓
Bursty Bots 500 000 × ✓ ✓
DeBot 700 000 × ✓ ✓

Other bots finally belong to none of the above categories.
These two data sets (StarWars, Bursty) contain samples of
discovered botnets, one quoting from Star Wars novels and the
other luring users to dubious websites through mentions. The
StarWars bots were all created during a small window of time
and have only a small number of friends and followers. The
Bursty bots, on the other hand, all have similar characteristics
in terms of a lifetime (only a few Tweets shortly after account
creation), with no friends or followers. Both were reported
by Echeverria et al. in [28], [32].

3) Optimization: Our model consists of one CNN, one
RNN, and two FFNN units.The hyper-parameters given are
the result of an exhaustive model-selection process. All layers
have a dropout ratio of 0.3 and use a LeakyReLU activation
function, with only the recurrent layer using a ReLU function.
The learning rate is fixed at 10−5. Our models are trained to
convergence, with a simulated annealing strategy to adjust the
learning rate during training.

B. Performance Comparison

In this section, we report on the performance of the algo-
rithms. Our goal is to measure their abstraction capabilities,
i.e., their detection performances on new, previously unknown
bot types. Unlike related work, the feature selection of our
algorithm is limited to behavioral information to obtain more
abstract representations. In addition to the baseline compar-
isons, we are also interested in the impact of the different
information sources. Therefore, we report the performance of
an FFNN model (referred to as META) fed only with metadata

TABLE III: General Performance: Results of evaluations of Botome-
ter (Bmeter), Echeverrias model, our META model (only using meta
information), and our ensemble of experts; evaluations are split into
6 groups of bot sets; average accuracy and standard deviation of the
approaches are at the bottom.

Data Set Botometer Eche META Expert

SSB1 0.924 0.492 0.763 0.949
SSB2 0.994 0.007 0.871 0.938
SSB3 0.941 − 0.745 0.919

TSB1 0.983 0.022 0.750 0.846
TSB2 1.0 − 0.893 1.0
TSB3 0.661 − 0.566 0.827
TSB4 0.978 0.020 0.789 0.948

FSF 1.0 − 0.474 0.909
INT 1.0 − 0.563 0.891
TWT 0.953 0.888 0.698 0.757

B1k 0.209 − 0.821 0.875
B100k 0.109 0.660 0.717 0.798
B1M 0.013 − 0.688 0.883
B10M 0.000 − 0.476 0.980

Darpa 0.277 0.779 0.680 0.835
Krebs 0.831 − 0.861 0.817
Nimmo 0.591 0.898 0.807 0.754

StarWars − 0.620 0.601 0.949
Bursty 0.028 0.981 0.898 0.975
DeBot 0.077 0.848 0.720 0.862

Avg. Acc. 0.609 0.565 0.719 0.886
↪→ std 0.406 0.361 0.126 0.071

information. In initial experiments, we have already excluded
the Tweet-text-only approaches as they showed worse perfor-
mance.

Besides the META model, all other algorithms are
provided with the same information sources. Note, however,
that Echeverria’s model uses information extracted from Tweet
texts but does not use NLP approaches for text understanding.
The test data is only used for the final evaluation, not for
model selection.

In our comparison, we include Echeverria’s approach
[11] as a representative of the algorithms using all features
with current classification approaches for detecting unknown
bots. We also compare against the Botometer to highlight the
shortcomings of the current go-to approach. Note however that
the approach can only be evaluated through the provided API.
Thus, training data cannot be controlled and indeed violates
the LOBO strategy. Nevertheless, due to its popularity as a
bot detection service, we include the Botometer as a baseline.
We report on Botometer results published by Echeverria et al.
[11] using the model accessible through the public API. Note
that experiments with bot types included in the training set
can be interpreted as loose upper bounds. For an overview
of the data used to optimize the Botometer model5 see Tab. II.

5https://botometer.osome.iu.edu/bot-repository/datasets.html
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TABLE IV: Average detection accuracy w.r.t. the bot categories.

Categories Bmeter Eche META Expert

Spam 0.926 0.135 0.768 0.918
Fake 0.984 0.888 0.578 0.852
Attackers 0.711 0.898 0.834 0.786
Campaigns 0.077 0.848 0.720 0.862
Mixed 0.122 0.720 0.676 0.874
Other 0.028 0.801 0.750 0.962

Avg. acc. 0.475 0.715 0.721 0.876
↪→ std 0.408 0.266 0.080 0.055

Echeverria: Tab. III reports the evaluation performances.
Overall, Echeverrias’ model shows severe performance issues
when detecting spambots (SSB, TSB). While the average
accuracy on other bot types is 0.811, the performance on
spambots is 0.135, only.

Botometer: The Botometer model performs best with an
average accuracy of 0.697 on bot types known from training
(remember: in violation with the LOBO evaluation strategy)
(including acc. of SSB, TSB, FSF, INT, TWT, B1k, B100k,
B1M, B10M). It performs poorly on human-annotated bots
(B1k, B100k, B1M, B10M) with an average accuracy of
0.083, while showing peak performance on the other known
bot types (Ø 0.943). When detecting unknown bot types, the
model accuracy drops drastically to 0.361.

Interestingly, according to these results, the Botometer
actually outperforms the model proposed by Echeverria et
al. [11] in terms of average accuracy (0.609 to 0.565). We
also note that the performance of both approaches varies
significantly depending on the bot type (standard deviation
(std): 0.406 and 0.361).

META model: Our metadata-based META model
achieved the best detection rates compared to the other
sub-models (CNN + metadata, RNN + text), with the Tweet
texts model performing the worst. With the feed-forward
component, we achieve accuracy between 0.474 and 0.898.
While peak performance is significantly below baselines
(≤ 0.526) in some cases, the model is more stable and
outperforms baselines in terms of average performance
(across all bot types), i.e., 0.719 compared to 0.609 and
0.565. Moreover, a standard deviation of 0.126 indicates a
better generalization than baselines. This is especially true
for fake and spambots.

Ensemble of Experts: Our ensemble model additionally
incorporates information from Tweet texts extracted using
BERTweet. The model achieves an average accuracy of 0.886
with a standard deviation of 0.071. Compared to the Botometer
model (cf Fig. 2) or Echeverria’s model (cf Fig. 3), it increases
the overall performance by 45.48% and 56.81%, respectively.
In 11 of 20 experiments, it outperforms the baselines and
never shows serious performance degradation. As for the peak

TABLE V: Further performance measures: F1 score, recall, and
precision of the ensemble of experts; evaluations are split into 6
groups of bot sets.

Data set Accuracy F1 Precision Recall P/R ratio

SSB1 0.949 0.944 0.904 0.987 0.916
SSB2 0.938 0.932 0.878 0.994 0.883
SSB3 0.919 0.917 0.869 0.971 0.895

TSB1 0.846 0.848 0.850 0.846 1.005
TSB2 1.000 1.000 1.000 1.000 1.000
TSB3 0.827 0.828 0.831 0.825 1.007
TSB4 0.948 0.951 0.907 1.000 0.907

FSF 0.909 0.905 0.962 0.854 1.126
INT 0.891 0.859 0.951 0.784 1.213
TWT 0.757 0.724 0.873 0.619 1.410

B1k 0.875 0.867 0.934 0.809 1.155
B100k 0.798 0.780 0.895 0.691 1.295
B1M 0.883 0.872 0.947 0.807 1.173
B10M 0.980 0.964 0.990 0.941 1.052

Darpa 0.835 0.842 0.875 0.811 1.079
Krebs 0.817 0.783 0.893 0.698 1.279
Nimmo 0.754 0.714 0.856 0.612 1.399

StarWars 0.949 0.951 0.919 0.986 0.932
Bursty 0.975 0.944 0.905 0.986 0.918
DeBot 0.862 0.871 0.858 0.886 0.968

performance, the worst performance degradation is 0.196 on
TWT (compared to Botometer), while the largest gain is 0.980
on B10M.

C. Bot Categories

Next, we report on the performance concerning the different
bot categories (see Tab. IV). Our approach yields the most
stable results with competitive performances in all categories.
Interestingly, in contrast to the average performance results
in the previous section, in this section, Echeverria’s model
significantly outperforms the Botometer and indeed achieves
similar results to our approach, except in the spam category.

The results show the instability of the Botometer, which
delivers top performance on spam and fake bots, but fails on
campaign-, mixed-, and other bots. Our META model already
delivers decent performance across the board (0.578−0.834),
but fails to deliver consistent peak performance. The results of
this model highlight the importance of feature selection and
confirm our assumption that bots can be detected based on
behavioral data.

Overall, the performance of our approach is significantly
more stable than related work, suggesting better generalization
capabilities.

D. Performance Details

In the following, we focus exclusively on the ensemble
of experts model to obtain a differentiated understanding of
its performance. Thus, more information on the bot detection
results can be found in Tab. V.

While accuracy is a measure of the overall detection ac-
curacy, we are interested in more detailed measurements. We
consider the F1 score, which provides information about the
precision and recall of the model. Here, recall denotes the
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Fig. 2: Accuracy comparison between the ensemble of expert model (red) and the Botometer (blue).

Fig. 3: Comparison between the ensemble of expert model (red) and Echeverria’s approach (blue).

percentage of bots that were missed by the algorithm, while
precision denotes the percentage of detected accounts that
are actually bots. In general, misclassifying a user is a more
serious error than overlooking a bot. Thus, precision is more
crucial than recall.

We note that F1 scores are similar to the accuracy measures.
This is to be expected since we worked with balanced data sets.
It confirms that the algorithm is generally balanced between
detecting bots and detecting benign users. Nevertheless, we
consider precision and recall separately.

Regarding this ratio (between precision and recall), we find
that results vary slightly, with some showing similar results
while others tend to have higher precision or recall. We note
that the bots belonging to the same category show the same
tendencies. In total, we achieve an average precision of 0.905
and an average recall of 0.856.

In general, traditional spam bots and campaign bots show
balanced results. Experiments with social spam bots (SSB)
and the other bots (StarWars, Bursty) show lower precision
compared to recall. This is to be expected since social spam
bots mimic human behavior and the other bots are non-
commercial concept bots (StarWars) or are only active for
a short period (Bursty). Finally, for the remaining bot types
(fake followers, mixed bots), precision is the higher score.

For human-labeled data sets, we have the most significant
imbalance between precision (0.920) and recall (0.760).

E. Performance Progression

Last, we investigate the performance progression of the
model as a function of the number of observed Tweets. To
this end, we simulate data aggregation based on a theoretical
number of observed Tweets. While we can adjust the number
of Tweets, we need to interpolate the corresponding metadata.
Note that by doing so, we introduce a bias towards better
(averaged) metadata and avoid artifacts that might be caused
by small amounts of data. We perform the evaluations on
all experiments and limit the number of observed Tweets to
{1, 3, 5, 7, 10, 25, 50, 100, 140}.

Fig. 5 shows the performance w.r.t. bot groups, while Fig.
4a shows the progression w.r.t. categories. In both cases, the
experimental results indicate that the algorithm requires only a
small number of Tweets to achieve a high level of accuracy. On
average, this level is reached after observing 20 Tweets. Fake
and social spam bots are an exception. Here, the algorithm
takes longer to collect its ‘sufficient statistics’.

If we take into account the performance for the first 10
observed Tweets (cf Fig. 4b), we see that the algorithm
only needs a single Tweet from some bot types. Due to the

Authorized licensed use limited to: KIT Library. Downloaded on September 27,2023 at 11:00:51 UTC from IEEE Xplore.  Restrictions apply. 



1679

(a) Avg. accuracy progression per bot category. (b) Accuracy progression of observing the first 10 Tweets.

Fig. 4: Performance progression with simulated data collection.

Fig. 5: Avg. accuracy per bot group; (1) SSB, (2), TSB (3), Fake (4),
Mixed (5), Darpa + Attack, (6) Campaign + Other.

biased metadata, these results imply that for some bot types,
statistics on behavior are sufficient for detection, while for
others, Tweet texts provide valuable information. For example,
the results suggest that the content of Tweets is particularly
important for social spam bot detection, which explains the
poor performance of Echeverria’s model in this context. On
the other hand, it seems that the detection of the StarWars- and
Bursty bots do not benefit from Tweet content information.

V. CONCLUSION

The combination of the prevailing bot detection evalua-
tions and performance-based feature selection has led to poor
generalization performance in the past. While the Botometer
achieves peak performance on known bots, the learned repre-
sentation of bots seems too narrow to identify new bot types.

In this work, we investigated whether it is possible to
identify generic bot behavior for generalized bot detection. We
devised a model based on the assumption that bot behavior
manifests as patterns in aggregated behavior in the form of

statistics and the content of the Tweets. In particular, we
ignored information that only exploited artifacts of specific
bot types in the data. Experiments on a standard feed-forward
model showed that selecting features that are limited to general
behavior data increases the overall generalization performance
of bot detection approaches. To achieve the best possible gen-
eralization, we developed an ensemble of neural networks to
combine different aspects of the information. The results of our
extensive experiments suggest that generic bot behavior can
be extracted and used for reliable bot detection. Using more
general features combined with a BERT model to incorporate
textual information yields competitive performance with better
consistency across bot types.

In general, it is complicated to classify the peak per-
formances correctly, since most of the datasets are noisy.
However, the difference regarding the generalizability of the
learned bot representations is clear. The performance of our
behavior-based approach significantly outperforms the others.

A look at the performance of the categories reveals the
weakness of the currently preferred solution, the Botometer.
With an average accuracy of 0.475 and a variance of 0.408,
this method is unsuitable for detecting bots in general.

Echeverria’s approach, on the other hand, shows much more
consistent performance across categories. With 0.715 accuracy,
it is much closer to the performance of our approach than the
Botometer. However, the use of all available information seems
to lead to a too narrow representation of general bot behavior.
This is also indicated by a relatively high variance of 0.266.

Our approach shows very consistent performance across
all bot types. As expected, it performed worst in detecting
fake accounts, since the objective of fake accounts depends
only very weakly on their behavior. Dedicated methods are
preferable here.

In terms of error type, we have an average precision of 0.905
and an average recall of 0.855. Thus, a bot is overlooked more
often (Type 2 error) than a user is detected as a bot (Type 1
error). Only in the case of SSB, Debot, StarWars and Bursty
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does the more expensive type 1 error occur more frequently.
Here, another striking finding is the imbalance between

precision and recall for the bot types labeled by humans.
While we have an average precision of 0.920, the recall is
significantly worse at 0.760.

The performance difference between our method and
Echeverria’s method concerning social spambots suggests
the importance of tweet content in detecting these bot types.
Here, semantic understanding of textual information appears
to be critical for consistent competitive performance.

The results of this work suggest that using behavioral
information can lead to a reliable and consistent detection
procedure. Especially in networks like Facebook, which offer
the user a larger action space, this seems to be possible
with sufficient accuracy. Twitter presents a more difficult task
because users here have only very limited options for action.

The approaches investigated here require high-quality la-
beled data. Obtaining this data is an expensive and lengthy
process. However, as long as clustering approaches are far
behind these methods in terms of performance, this is the only
realistic way.

REFERENCES

[1] B. D. Loader and D. Mercea, “Networking democracy? social media
innovations and participatory politics,” Information, communication &
society, pp. 757–769, 2011.

[2] C. Shao, G. L. Ciampaglia, O. Varol, K.-C. Yang, A. Flammini, and
F. Menczer, “The spread of low-credibility content by social bots,”
Nature communications, pp. 1–9, 2018.

[3] E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini, “The rise
of social bots,” Communications of the ACM, pp. 96–104, 2016.

[4] V. S. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan,
K. Lerman, L. Zhu, E. Ferrara, A. Flammini, and F. Menczer, “The
darpa twitter bot challenge,” Computer, pp. 38–46, 2016.
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