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Abstract—Mix networks are a well-known technique to hide
communication metadata, but incur a high overhead especially
in group communication settings. This hinders their adoption
in real-world usage, as group communication makes up a
big part of modern communication patterns. In this paper,
we introduce “PolySphinx”, a mix format that is a step
towards efficient anonymous multicasting and allows a mix
node to replicate the message payload to multiple recipients. We
prove that PolySphinx does not compromise on the anonymity
offered to users, while considerably reducing the latency of
group messages: In a group with 25 members, the average
latency drops from 6.1 s using the state-of-the-art Rollercoaster
approach to 4.1 s using PolySphinx.

1. Introduction

Group communication plays an important role in modern
life [1]. However, as with most digital communications,
metadata leaked to malicious parties can pose serious threats.
For example, metadata may reveal that a user is associated
with a group such as Alcoholics Anonymous or the extra-
parliamentary opposition. Such a revelation can have serious
implications for the user’s social status and even safety.

Mix networks, a concept introduced by David Chaum [2],
can be used to hide such metadata. In a mix network, a
message is sent through a series of mix nodes, each of which
collects incoming messages and relays them to the next node
along the path in such a way that an observer cannot link
incoming and outgoing messages and thus cannot identify
sender and recipient. For their operation, mix networks define
a mix format, which describes how the message and path are
prepared for the mix nodes to operate. Sphinx [3] provides a
modern mix format that is used in several mix networks [4]–
[6]. It lacks dedicated support for group communication.

Group communication technically translates to multicast,
i.e. the ability to send a single message to multiple recipients.
Any one-to-one communication channel can naı̈vely support
multicast communication by having the sender replicate the
message and send multiple copies individually. However,
this approach does not scale well: First, the sender must
send the messages one at a time, possibly with limited
frequency, which increases latency. Second, the sender’s
outgoing bandwidth consumption is multiplied by the number
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of recipients of the message, since the payload has to be
sent multiple times. ‘True’ multicast, where the sender sends
a single message that is replicated as close to the recipients
as possible, would eliminate both drawbacks.

Many modern group communication applications such as
video calling, live streaming, and collaborative productivity
tools require both low latency [7] and high bandwidth [8].
Future applications such as the metaverse will only increase
these requirements [9]. Due to longer paths and limited
sending rates, mix networks inherently increase latency over
direct communication. If mix networks are to be used to
anonymize these group communication applications, multi-
cast support in mix networks must be improved. The goal
of this paper is to significantly reduce both the bandwidth
and latency overhead of multicast communication in mix
networks while maintaining strong privacy guarantees.

In this paper, we introduce PolySphinx, a new mix format
based on Sphinx. The PolySphinx format allows the sender
to instruct a mix node to act as a “replication node”, copying
a single message to multiple recipients. This alleviates
bandwidth usage for the client and significantly reduces
message latency: We show that in a group of 25 members,
the average group size required by users [10], we can reduce
latency from 6.1 s using the state-of-the-art approach [11] to
4.1 s using PolySphinx. Furthermore, PolySphinx improves
the goodput in a network even for small replication factors
of 2 as long as messages are larger than 435 Bytes.

Revealing replication information to a potentially mali-
cious third party is a serious privacy risk. PolySphinx avoids
this risk by providing the replication node with precomputed
information about the remaining paths to the recipients, of
which it can only decipher the immediate next hops. In doing
so, PolySphinx does not compromise privacy: We prove that
PolySphinx provides the same anonymity as previous work,
even against a global active adversary and adversarial mix
nodes.

In particular, we make the following contributions

• We introduce the PolySphinx mix format, which
allows efficient multicasting of messages in mix
networks.

• We prove the security of PolySphinx against a global
active adversary.

• We provide an open source implementation of
PolySphinx and a prototype of a PolySphinx-based
mix network.



• We use and extend the existing mix network simulator
of Hugenroth et al. [11] to evaluate PolySphinx and
demonstrate its superior performance over existing
approaches.

In Section 2 we introduce the required background and
in Section 3 the related work. In Section 4 we define our
threat model, before giving the general idea of PolySphinx
in Section 5. In Section 6 we detail the construction of
PolySphinx, after which we prove its security in Section 7
and evaluate its performance in Section 8. We give our
conclusion in Section 9.

In this paper, we discuss a vanilla version of PolySphinx.
We sketch possible extensions that may further improve
performance and flexibility in Appendix D.

2. Background

In this section, we will first introduce some general
notation and primitives that we will use throughout this
paper, before introducing the Sphinx format that forms the
basis of our extension, and the Loopix system that provides
the context for our evaluation.

2.1. Notation

The following notation is common throughout the paper
(cf. Appendix A for a notation table). We use κ as our
security parameter. The bigger κ is, the more work has to
be done by an attacker to break our security guarantees.

In a mix network, a message is relayed through multiple
mix nodes before arriving at its destination. To prevent
messages from being linked based on their size, we assume
that each payload has a size of l ∈ N bits. We also assume
that headers have a fixed size, which leads to an upper
bound on the length of a message path, denoted as r ∈ N. For
PolySphinx, we assume that a mix node acts as a “replication
node”, creating multiple copies of a single incoming message.
To hide the exact size of the recipient set, we always replicate
by a factor of p ∈ N, which we call the “replication factor”.

For working with bit strings, that is elements of {0, 1}∗,
we define 0k to be the string consisting of k null-bits, 00 to
be the empty string, we define a++ b to be the concatenation
of a followed by b, and we define a[x..y] to be the substring
of a ranging from indices x to y, inclusive.

We define the Decisional Diffie-Hellman Problem (DDH)
as the problem of distinguishing between tuples (ga, gb, gab)
and (ga, gb, gc), where g is the generator of a group [12].
We say that the DDH-Assumption “holds” in a group if the
DDH Problem cannot be solved efficiently in this group. For
the remainder of this paper, we use G to be a prime-order
cyclic group in which the DDH-Assumption holds, G∗ to be
G without identity element, g to be the generator of G and
q to be the order of G.

2.2. Cryptographic Primitives

We require several hash functions, which we model as
random oracles:

• We use a hash function hµ : G∗ → {0, 1}κ to derive
keys for a message authentication code.

• We use a hash function hρ : G∗ → {0, 1}κ to derive
keys for a pseudorandom number generator.

• We use a hash function hb : G∗ × G∗ → Z∗
q to

generate “blinding factors”.
• We use a hash function hK : {0, 1}κ → {0, 1}κ to

re-randomize key material.

To verify the authenticity and integrity of a packet’s
metadata, we require a message authentication code (MAC),
denoted as µ : {0, 1}κ×{0, 1}∗ → {0, 1}κ. The MAC takes
a key and input string and outputs a message “tag”. We
model µ with a fixed key as a random oracle.

To encrypt the metadata, we require a pseudorandom
number generator, denoted as ρ : {0, 1}κ → {0, 1}∞. We
view ρ as internally re-seeding itself and being able to output
arbitrarily many bits. We use the substring notation ρ(·)[x..y]
to denote a specific range of output bits from ρ.

To encrypt the message payload, we require a pseudoran-
dom permutation family, keyed by a key from {0, 1}κ. We de-
note the permutation mapping as ENC : {0, 1}κ×{0, 1}l →
{0, 1}l, and the inverse as DEC : {0, 1}κ×{0, 1}l → {0, 1}l.

2.3. Sphinx

Sphinx is a mix packet format introduced by Danezis
and Goldberg [3]. Due to its compactness, it has been used
as a base for multiple anonymous communication networks
(ACNs) [4]–[6] and is a good foundation for our format
extension.

To identify network participants, Sphinx assigns each
user u ∈ U an address in {0, 1}2κ and each mix node
n ∈ N an identifier in {0, 1}κ. Sphinx also requires each
mix node n to have a private key xn ←R Z∗

q and a public
key yn = gxn ∈ G∗ used for Diffie-Hellman key exchanges.
It is assumed that each network participant can obtain the
public key of each mix node, but the public key infrastructure
is beyond the scope of this paper.

When a user wants to send a message to another user, she
first chooses a random path of mix nodes through the network
to generate the Sphinx packet. A Sphinx packet is created
in two parts: First, the header is created independently of
the message payload. This header contains the information
needed to route the packet through the mix network. Second,
the message payload is prepared by encrypting it with all the
keys of the mix nodes the packet will pass through, in reverse
order. This method of payload encryption is commonly
referred to as onion encryption, as each layer of encryption is
“peeled off” one by one at each hop. The header is consumed
by the mix nodes as the packet is forwarded hop by hop. The
final mix node acts as the exit node, delivering the message
to the intended recipient.

The Sphinx format ensures that each mix node only has
access to the information necessary to forward the packet
to the next hop in the path, and that outgoing and incoming
packets cannot be linked without the private key of the
node that processed them. This is achieved by having a



shared secret between the message sender and each mix
node, which is used as the basis for header encryption and
MAC generation. The shared secret is generated using a
Diffie-Hellman key exchange, where the sender uses a one-
time private key and embeds its part of the key exchange
in the header, from which the mix node can then generate
the shared secret. The pre-computed Diffie-Hellman part is
called the Sphinx group element.

2.4. Multicast Support in Sphinx

Multicast messaging can be built on top of existing
unicast messaging strategies, albeit inefficiently. The “naı̈ve”
approach is for the sender to simply send a copy of the
message to each recipient individually. We call this approach
the sequential unicast strategy.

The disadvantages of the sequential unicast approach
are twofold: First, senders in a mix network are usually
rate-limited, so sending messages one at a time results in
huge latencies. Second, the sender has to waste bandwidth
by sending the same message content multiple times.

MultiSphinx [11] provides a way to reduce these latencies
by allowing a sender to combine multiple outgoing packets
into a single “big” packet. A mix node along the path then
splits the packet again into its inner packets. While this
approach can reduce latency, it does not help with bandwidth
consumption as the sender still has to send multiple copies of
the same payload: The “big packet” must contain full replicas
of the multicast packet, and smaller packets must be padded
to “big packet size”. The main advantage of MultiSphinx is
that “sending fewer but larger messages allows lower power
consumption on mobile devices” [11, p. 10].

Rollercoaster [11] does multicasting by dividing the work
among group members: Recipients who have already received
the message help distribute it to the rest of the group. This
is done via a deterministically generated schedule that can
be reconstructed by any group member, so that each member
knows her “delivery responsibility”. While this scheme scales
well to large groups due to the exponential growth of the
number of people reached in each step, there is still a large
latency for smaller groups before the benefits of distributed
work kick in.

2.5. Loopix

Sphinx itself is only a packet format and cannot protect
against traffic correlation or frequency analysis attacks.
Therefore, we consider Sphinx in the context of the Loopix
anonymity system [5]: The Loopix system uses Sphinx as a
packet format, but adds rules describing how packets must
be mixed at mix nodes to avoid correlation attacks, as well
as mechanisms to detect other types of active attacks on the
network. To evaluate PolySphinx, we will build a Loopix
variant that uses PolySphinx as the packet format and add
rules that send PolySphinx packets for multicast messages.

The goal of Loopix is that an adversary cannot trace a
message from its sender to its recipient as long as there is
at least one non-adversarial node on the path.

Loopix assumes the existence of a global adversary who
can monitor traffic on any network link and inject arbitrary
messages. It further assumes that a subset of the mix nodes
cooperate with the adversary, i.e., such nodes share their
secret keys with the adversary or change their functionality
at the adversary’s command.

In Loopix, message mixing is done by delaying incoming
messages by a random amount of time, chosen by the sender.
This is a technique known as stop-and-go mixing [13]. In
addition to the mixing, Loopix uses drop messages to hide
user activity (a technique commonly called “cover traffic”),
and loop messages that a user sends to herself to help with the
detection of active attacks. The different kinds of messages
are sent according to different sending rates.

3. Related Work

ACNs can be based on several techniques [14]: Mix
networks [2] hide sender-recipient relations by having mix
nodes collect and “shuffle” messages before relaying them,
while onion-routing [15] takes a similar approach of re-
laying messages through a series of nodes, but skips the
shuffling. Dining cryptographer networks (DC-nets) [16]
ensure anonymity by having each participant provide a
small piece of information necessary to reconstruct the
message. Networks based on private information retrieval
(PIR) typically rely on homomorphic encryption [17] to allow
clients to anonymously retrieve messages from a server [18].

There are a number of systems that allow users to commu-
nicate anonymously over shared “dead drops”. Systems like
Vuvuzela [19] and Karaoke [20] obfuscate dead drop access
via a mix network. Express [21] allows users to anonymously
write to dead drops via distributed point functions.

In general, dead drop-based systems lend themselves well
to multicast communication, since a single dead drop can be
accessed by many users. However, current approaches have
significant drawbacks: Vuvuzela and Karaoke use server-
generated noise to hide dead-drop access patterns. Due to
their anytrust mix network design, every server must generate
enough noise to hide accesses by itself. When dead drops
can be accessed by more than two clients, the variability in
dead drop access patterns increases, further exacerbating the
amount of noise needed. Express only hides who is writing
to a dead drop. An adversary can trivially determine who is
accessing the same dead drop, posing a significant privacy
risk. Provisioning separate dead drops for each member of
the group maintains privacy guarantees, but imposes more
overhead on the sender, since the message must be replicated
to each member’s dead drop.

DC-nets [16] rely on a broadcast medium, which makes
them inherently suited to multicast messaging, but also acts
as a barrier to the efficiency and scalability of such systems.
Modern iterations of this protocol family (e.g., Dissent [22],
D3 [23], and Verdict [24]) aim to improve efficiency, but still
lag behind mix networks and onion routers when it comes
to real-world performance. D3, for example, takes several
minutes to set up a shuffle round between a few hundred
clients, and then another minute per message sent.



Onion routers like Tor [15] allow for low-latency com-
munication, but make the network vulnerable to global
adversaries and traffic or frequency correlation attacks [25]
because they do not hide timing or size information of the
routed packets. This allows an adversary to deanonymize
users. While Tor assumes a one-to-one messaging model,
multicast messaging can be built on top by using multicast
trees combined with anonymous routing, as done by AP3 [26]
and MTor [27]. These approaches can provide low-latency
and bandwidth-efficient multicasting, but they suffer from
similar weaknesses against global adversaries as Tor.

Nym1 is a deployed mix network with many available
mix nodes. At its core, Nym uses the Loopix [5] mixing
scheme and the Sphinx [3] format. As Loopix, Nym does
not provide efficient group messaging.

XRD [28] provides horizontal scalability for mix net-
works by dividing the network into smaller mix chains and
ensuring that each pair of users shares a chain. A user in
this system naturally sends multiple messages in each round
(one for each of the chains she is part of). However, setting
up the system so that each pair of group members shares a
different mix chain is computationally expensive and might
reveal group membership during the setup process.

M2 [29] is a mix network with built-in multicast ca-
pabilities. However, its design allows mix nodes to learn
information about group sizes, which together with a-priori
information can be used to identify users. It also requires
users to subscribe to the content they want to receive, which
is infeasible in a group where every member sends messages.

Various approaches to ACNs promise strong
anonymity [5], [16], efficiency [15], [29], scalability [19],
[23], or real-world implementations [6], [15]. However,
none of them provide low-latency, high-bandwidth group
multicast with strong anonymity guarantees against a global,
active adversary to support, for example, real-time group
video calls in anonymous groups.

4. Threat Model & Goals

In this section, we will introduce our assumed network
setting, as well as our threat model.

4.1. Network Setting

Our network consists of two main types of participants:
The users U and the mix nodes N . Each user accesses the
network through a mix node of her choice, called a “provider
node”, which acts as a gateway between the user and the
mix network. A user sends new messages into the network
through her provider node, and the provider holds messages
for the user so that she can retrieve them.

We also assume that there are groups of users who wish
to communicate with each other, where a group is a subset
of all users. A message sent by one group member should be
received by all other group members. Groups in PolySphinx
are created ad hoc by sending a single message to multiple
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recipients. The “group members” are therefore the recipients
and the sender of the message combined. We consider group
management to be an interesting but orthogonal problem to
our work, and do not discuss it further. Instead, we assume
that each group member has a list of other group members
who should receive the message.

To facilitate group messaging, a mix node can act as a
“replication node”. In this case, the task of the mix node is
to generate multiple copies of a message to send to multiple
recipients. The sender chooses a random path through the
mix nodes, the first node acts as the replication node. There
is a maximum of one replication node per packet.

For simplicity, we assume that a sender always sends a
message to exactly p recipients {r1, . . . , rp}, corresponding
to the replication factor. If the group contains more people,
multiple independent packets can be created until all group
members are included, and dummy recipients can be used
to ensure that each packet has exactly p recipients. We leave
the concrete implementation of these mechanisms to the
protocol using PolySphinx.

4.2. Threat Model

Similar to Sphinx and Loopix, we assume the existence
of a global adversary who can read all network traffic.
Furthermore, we assume that the adversary can collaborate
with a subset of the mix nodes, gaining access to their secret
keys and being able to control their behavior. We call nodes
that collaborate with the adversary corrupt, and nodes that
do not collaborate honest.

We also assume that the group members trust each other,
i.e., the adversary cannot corrupt them. Since each group
member has a list of group members, corrupt recipients would
trivially allow an adversary to learn this list. This model of
trust within the group is shared by other multicast-related
work, such as Rollercoaster [11] and M2 [29].

Our goals are similar to those of Loopix. Intuitively, we
want to hide the sender-recipient relationship, i.e. which
sender is connected to which (individual) multicast recipient.
We also want to hide to which recipients a given multicast
message is sent.

Recall that in our model, group members trust each
other. Therefore, we do not aim to hide the sender-recipient
relationship or the other recipients from the group members,
and we assume that a group member will not collaborate
with the adversary.

Our goals therefore are:
• Given that there is at least one honest node on the

path between a sender and recipient, this sender-
recipient relationship is protected. We call this prop-
erty single sender anonymity (SSA).

• Given that there is at least one honest node between
a recipient and the replication node, this recipient
is protected from being exposed as a recipient to
the adversary. This holds even if the adversary has
managed to track the message to the other recipients
or the sender.We call this property reception exposure
protection (REP).

https://nymtech.net/


We note that protecting the set of recipients without at
least one honest node between the replication node and the
recipient cannot be achieved in a design based on replication
nodes: If we assume that the replication node and all the
nodes behind it are corrupt, the adversary could simply
cooperate with all these nodes and then link the recipients
together. However, since an honest replication node itself
or honest nodes behind a replication node also protect the
sender-recipient relationship, we put the replication node
at the start of the path and keep the paths behind it long.
This way we achieve anonymous replication without any
additional latency.

5. Design Overview

We introduce PolySphinx as a new mix format based
on Sphinx [3], adding capabilities that allow a mix node
to replicate a message in transit. This approach shifts the
communication overhead from the sender (an end device
with limited resources) to a mix node (a server with more
resources). We refer to a mix node that replicates a packet as
a “replication node” for this path. As with other mix formats,
the sender determines the path a PolySphinx packet will take
when it is created. Thus, the sender alone determines the
position of the replication node within the path.

The sender can think of message distribution as laying
a tree over the network of mix nodes, where the vertices
are the mix nodes that the message should traverse and the
leaves are the exit nodes. If a vertex has multiple children,
it acts as a replication node. For visualization, see Fig. 1.

The position of the replication node is a trade-off between
sender and recipient protection: The sender prefers to have
a long path between her and the replication node, since an
honest node there is on the path from her to every recipient.
This unlinks her from all communication partners at once.
Similarly, each recipient prefers to have a long path between
herself and the replication node, since an honest node there
will unlink her from the other recipients (and the sender).

While PolySphinx supports replication at any node, it is
beneficial for the anonymity sets that all senders decide on the
same position of the replication node in the path. As argued in
Section 4.2, we analyze PolySphinx with the first node chosen
as replication node. This placement maximizes protection
for all recipients while keeping the overall path length short.
When all recipients are unlinked from the communication,
the sender-recipient relationship is automatically protected
as well. During an ongoing chat, group members act as both
senders and recipients, so current senders are incentivized
to behave in a non-egoistical manner. If a sender does not
adhere to this node placement, they can be detected (and
punished) by the recipients.

Like MultiSphinx [11], we require a fixed replication
factor of p to hide the exact information about the number
of recipients. Thus, all senders must always build packets
for p recipients. If they want to send their message to fewer
recipients, they must add dummy recipients. PolySphinx
provides clients with p fixed dummy addresses. Packets

Sender ×
R E

R E

Recipient

Recipient

Figure 1: A multicast tree. The encircled × represents a
replication node, the R a relay node and the E an exit node.
Blue arrows denote the path pre-replication, green arrows
post-replication.

addressed to these clients are detected and discarded by the
last node in the path.

For a mix network to provide anonymity, a mix node
must not learn anything about the path of a message except
for its immediate predecessor and successor nodes. This must
also hold for the replication node, since we must assume
that it may be corrupt. Therefore, we cannot simply send a
list of recipients (in plain text) to the replication node, and
we cannot rely on the replication node to generate new and
correct onion-layered packets for us. Nor can we provide
complete pre-generated packets to the replication node—as
MultiSphinx does—because that would waste bandwidth. We
therefore need to find a way for a node to replicate a packet
so that it is both indistinguishable from its origin and its
copies, and still decryptable by the intended recipient.

We solve the problem of how to get the recipient names
to the replication node by providing it with pre-computed
PolySphinx headers that encode the full path between the
replication node and the final recipient. Since the sender
generates these headers and chooses the paths that they
encode, even a corrupt replication node cannot “peek” into
them to learn more than the immediate next hop.

To solve the problem of actually replicating the payload,
we build the onion “in reverse”: Each mix node adds a layer
of encryption to the packet, using a key that the sender
provides in the header specifically for that node. For the
replication node, the sender embeds multiple keys, so that
the replication node can generate different copies of a single
input packet.

To ensure that the recipients can decrypt the payload
and access the plaintext, the sender could trivially embed
the same keys that it provided to the mix nodes for the
recipients. The recipients can then remove the encryption
layers one by one. However, embedding many keys adds a
lot of overhead, since each recipient would need κr bits of
key material. We save space by generating the keys using a
key tree, a deterministic scheme that allows a recipient to
generate the same keys based on a single seed and a few
bits of path information, adding only κ + r log2 p bits of
overhead.

6. PolySphinx

In this section, we will provide the detailed construction
of the PolySphinx format.
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Figure 2: Header layout in Sphinx (top) and PolySphinx
(bottom). The symbol � denotes the address of the next
node, ✓ a MAC, ¤ an encryption key, and µ a ciphertext.
Hatched fields denote padding. Field sizes are not to scale.

6.1. Key Tree

The key tree is used by the sender and recipients to de-
terministically derive keys from a seed and path information.
While there has been previous work on efficiently generating
and updating group keys using Asynchronous Ratcheting
Trees (ARTs) [30], [31], our requirements do not fit the use
case for ARTs: Instead of a single shared group key, we
need a deterministic way to generate multiple keys along
a packet’s path. We denote the key tree as K and define it
recursively:

Definition 1 (Key Tree). Given a seed S ∈ {0, 1}κ, a hash
function hK, and a replication factor p ∈ N, we define the
key tree K as follows:

• The root K [] is defined as hK(S).
• Given a (possibly empty) path x = x1;x2; . . . and the

corresponding K [x], the ith child K [x; i] is defined
as K [x; i] := hK(K [x] + i) for 1 ≤ i ≤ p.
The ; operator “concatenates” the path elements.

From the vertices of the key tree, the sender can now
derive the keys for the mix nodes, and the recipient can use
the seed S and the path choices to derive identical keys. It is
important to note, however, that the key tree vertices K [. . .]
are not used directly as keys, since knowing such a value
would allow the mix node to reconstruct the subtree below
it, thereby compromising other keys. Instead, we treat the
key tree as a confidential internal state and apply another
hash function before embedding its values as keys.

6.2. Header Structure

Our header follows a similar general structure to the
Sphinx header [3, p. 5] with the differences that 1) we can
embed multiple lower level headers within a header and 2)
we embed the derived key tree keys for each mix node —
see Fig. 2 for a simplified visualization of the differences
between Sphinx and PolySphinx. For the final recipient, we
also embed the key tree seed and path information to allow
reconstruction of the correct key tree.

We view our header as a 3-tuple h = (α, β, γ), where
α is the so-called Sphinx group element, a precomputed
Diffie-Hellman key exchange, β is the encrypted routing
information, and γ is the message authentication code.

After decryption at a mix node, the routing information
contains the address of the next mix node in the path n′, the
next message authentication code γ′, the key σ with which
to encrypt the message, and the routing information β′ to
pass to the next node. Additionally, there is a flag byte at
the start to signal to the mix node whether it should act
as a simple relay node, a replication node, or an exit node.
For this we use three arbitrarily chosen but distinct bytes
fR, f×, fE ∈ {0, 1}8.

6.3. Header Creation

We view header creation as a distinct step in the genera-
tion of a PolySphinx packet, since the header is created
independently of the message content, and we generate
headers recursively to embed them for use by the replication
node.

The header creation algorithm is denoted as
CREATEHEADER, which takes as input a path segment of
mix nodes n0, . . . , nν−1 that the packet should traverse, as
well as the following additional information per node:

• For the final node nν−1, the additional information is
the routing data, denoted as ∆. If the created header is
post-replication, this contains the recipient’s address,
such that the node can act as an exit node and deliver
the message to the recipient. If the created header
is pre-replication, then ∆ contains the inner headers
that the replication node must use.

• For the remaining nodes ni, the additional informa-
tion is the encryption key σi (0 ≤ i < ν − 1) that
the node should use to encrypt the message.

Now the sender first picks a random x←R Z∗
q and then

computes the Sphinx group elements αi, the shared secrets
si and the blinding factors bi for every node ni along the
path segment:

α0 = gx, s0 = yxn0
, b0 = hb(α0, s0)

α1 = gxb0 , s1 = yxb0n1
, b1 = hb(α1, s1)

...
...

...

αi = gxb0b1...bi−1 , si = yxb0b1...bi−1
ni

, bi = hb(αi, si)

To build the routing information β, we need to know
its size first, so we can properly encrypt it. For brevity, we
define τ (Pre) and τ (Post) to be the size of the routing
information |β| in bits, pre- and post-replication respectively.
The size τ (·) depends on the maximum path length r and
the replication factor p, and can be computed as follows:

τ (Post) = r(8 + 3κ) + κ+ r⌈log2 p⌉
τ (Pre) = (r − 1) · (8 + 3κ) + 8 + p · (5κ+ τ (Post))



To ensure that mix nodes cannot tamper with the header,
we include a Message Authentication Code (MAC) γ for each
hop. The MAC is computed over the routing information
β and embedded for each node along with the next hop
address. Since each mix node will pad the header to ensure
a constant length, we need to include the paddings in the
MAC’ed data. This is done with filler strings ϕi that represent
how the cumulative padding will arrive at node i, including
the encryption that the mix nodes will apply. Filler strings
are built iteratively:

ϕi :=

{
00 if i = 0

(ϕi−1 ++ 08+3κ)⊕
(
ρ (hρ (si−1))[a..b]

)
else

where a = τ (·)− (i− 1) · (8 + 3κ)

and b = τ (·) + 8 + 3κ− 1

As the final step, the sender can now assemble the header:

f = fE if post-replication, f× otherwise

βν−1 =
(
(f ++∆)⊕ ρ (hρ (sν−1))[0..8+|∆|]

)
++ ϕν−1

For 0 ≤ i < ν − 1 : βi = β̂i ⊕ ρ(hρ(si))[0..τ(·)−1]

Where β̂i = fR ++ ni+1 ++ γi+1 ++ σi ++ βi+1[0..τ(·)−3κ−1]

For 0 ≤ i ≤ ν − 1 : γi = µ (hµ (si) , βi)

The resulting header (α0, β0, γ0) encodes the given path
segment, and can be processed by the first node n0. In
the PolySphinx design, this header can not just be used to
send a message directly, but it can also be embedded for a
replication node to use.

6.4. Message Creation

Message creation in PolySphinx consists of three main
steps: First, the sender must select paths through the mix
network and determine where to replicate. Next, the sender
creates the headers that encode the chosen paths. Finally,
the sender attaches the payload to complete the packet and
sends it to the first mix node.

If the sender wants to send a message m to p recipients
{r1, . . . , rp}, she first creates a replication schedule, i.e., a
tree describing how the packet moves through the network,
with the sender at the root, the mix nodes as vertices, and the
recipients at the leaves (see Fig. 1). The replication schedule
is generated by picking the randomly chosen first mix node
as the replication node, and then for each recipient, picking
a random path of mix nodes from the replication node to
the recipient.

The sender then picks a random seed S ←R {0, 1}κ to
generate the key tree K and maps the nodes of the replication
schedule to the nodes of the key tree so that every path a
message takes is mapped to a path in the key tree.

The sender then builds the headers from the inside out,
first building the post-replication headers from the replication
node to the exit nodes, and then wrapping them in the pre-
replication header from the sender to the replication node.

For the post-replication headers, for each recipient ri,
the sender generates the header hi using CREATEHEADER,
passing the following parameters

• The routing information for the final node is ∆ =
S ++ Pi ++ ri, where Pi represents the path choices
for this message in the key tree, and ri represents
the recipient’s address.

• The sequence of mix nodes is the chosen path seg-
ment from the replication node to the exit node. For
each mix node nj , the associated key is hK(K [pj ]),
where pj represents the path in the key tree up until
nj .

With the inner headers hi generated, the sender can then
go on to create the header for the path up until the replication
node, again using our CREATEHEADER procedure. This time,
the following parameters are used:

• The routing information is the concatenation of all
inner headers, including the addresses of the next
hops after the replication node and the encryption
keys: ∆ = (n0,0 ++ hK(K [p0,0]) ++ h0) ++ . . . ++
(n0,i ++ hK(K [p0,i]) ++ hi)

• The sequence of mix nodes is the path segment from
the sender’s provider node up until the replication
node, with the corresponding associated keys from
the key tree.

To build the complete PolySphinx packet O, the sender
encrypts her message m with the first key derived from the
key tree and attaches the resulting payload ξ to the header:

ξ = ENC (hK(K []),m) O = ((α, β, γ), ξ)

To hide their sending activity, senders must send at a
fixed rate. In the absence of ‘real’ messages, cover messages
must be generated. Cover messages are built as described
above, but with a random m and dummy recipients. Note
that in addition to PolySphinx’s new group communications,
usual unicast communications can be supported. In this case,
two streams of cover traffic must be generated to hide the
client’s communication activity perfectly.

6.5. Message Processing at Mix Nodes

When a mix node n with private key xn receives a
packet ((α, β, γ), ξ) where (α, β, γ) is the header and ξ is
the payload, it starts by computing the shared secret s = αxn

and the message authentication code γ′ = µ(hµ(s), β).
If the mix node has seen the header before, the packet is

discarded to prevent replay attacks. If the the MAC does not
match (γ ̸= γ′), the node also discards the packet to prevent
tagging attacks.

Afterwards, the node can decrypt the routing information
by applying the stream cipher ρ:

B = (β ++ 08+3κ)⊕ ρ(hρ(s))[0..τ(·)+7+3κ]

The mix node can now cut off the flag byte f = B[0..7]

from the beginning of B and use it to determine further
action:

• If f = fR, the node should relay the packet to the
next mix node. It extracts the first κ bits from the



beginning of B as n′, then κ bits as γ′, κ bits as σ
and the remainder of B as β′. It then computes the
next Sphinx group element α′ = αhb(α,s) and can
send the processed packet ((α′, β′, γ′), ENC (σ, ξ))
to n′.

• If f = fE, the node is the designated exit node
for a message. It extracts the first κ bits from the
beginning of B as the seed for the key tree S, the
next r⌈log2 p⌉ bits as the path Pi, and finally the
next κ bits as the recipients address ri.
If the recipient’s address corresponds to one of
the designated dummy recipients, the node discards
the packet. Otherwise, the node reconstructs the
decryption keys hK(K [pi,0]), hK(K [pi,1]), . . . using
the seed S and path information Pi, decrypts the
message using those keys, and delivers the plaintext
to the intended recipient.

• If f = f×, the node is the designated replication node
and should send p copies of the packet. To do that, the
replication node extracts the p inner headers from B
as shown in Fig. 3. Finally, for each extracted header
hi, it sends the packet ((αi, βi, γi), ENC (σi, ξ)) to
the respective next hop ni.

We write PROCESSPACKET as a shorthand for the
algorithm described in this subsection. The output of
PROCESSPACKET is a tuple with the flag byte and the
extracted information:

• For packets to be relayed, it is the unwrapped inner
packet and the address of the next mix node.

• For packets to be sent to the destination, it is the
recipient’s address and the payload.

• For packets to be replicated, it is a list of inner
packets and corresponding addresses of the next mix
nodes.

7. Proof of Security

Before presenting our proof, we introduce background
on formal security in onion routing on which we base
our properties. Afterwards, we will prove the security of
PolySphinx in two steps: In the first step, we will prove the
security at a non-replicating mix node, a property we call
intra-level indistinguishability. In the second step, we will
then prove that the security also holds at a replication node,
a property we call inter-level indistinguishability. Since we
assume the existence of an honest node on the path, and
this node can be either a “normal” mix node or a replication
node, our security holds in either case.

7.1. Formal Definitions

We will base our security proof on the formal work
of Kuhn et al. [32]. In this subsection, we introduce their
definition of Layer-Unlinkability (LU), and give intuition
behind its meaning, so that we can adapt it to the multicast
use case later.

The property of layer-unlinkability requires that a packet
that passes through an honest node cannot be re-identified
after it has been processed. Kuhn et al. formalize this property
using a game that is played between a challenger and the
adversary. Given a processed onion, the adversary has to
decide whether it originates from a known onion or a random
one generated by the challenger. If no efficient adversary can
do so, the honest mix node successfully unlinked incoming
(known) packets from outgoing ones.

Formally, the game is defined as follows:

Definition 2 (Layer-Unlinkability [32]).

1) The adversary receives as input the challenge public
key yj , chosen by the challenger, and the name of
the honest mix node.

2) The adversary may submit any number of packets O
of her choice to the challenger. The challenger sends
the output of the processed onion to the adversary.

3) The adversary submits a message m, a path N =
{n0, . . . , nν} with the honest node at position j
(0 ≤ j ≤ ν) of her choice and key pairs for all
nodes ni, i ̸= j.

4) The challenger ensures that the chosen values are
valid and chooses b←R {0, 1} randomly.

5) The challenger creates a packet O0 with the adver-
sary’s input choice, as well as a second packet O1

with a random message m′ and a random, valid
path N ′ that includes the subpath from the sender
to the honest node nj:

N ′ =
{
n′0, . . . , n

′
k = n0, . . . , n

′
k+j = nj , . . . , n

′
ν′

}
We denote the layers of O0 and O1 just before the
honest node as O′

0 and O′
1.

6) The challenger gives Ob and the output of processing
O0 at the honest node to the adversary.

7) The adversary may submit any number of packets O,
O ̸= O′

0, O ̸= O′
1 to the challenger. The challenger

sends back the output of processing O at the honest
node.

8) The adversary produces guess b′.

LU is achieved if any PPT adversary cannot guess b′ = b
with a probability non-negligibly better than 1

2 .

Kuhn et al. also define Tail-Indistiguishabilty, which
ensures that two onion-layered packets that share the same
path after an honest node cannot be distinguished by an
adversary, even if the recipient is corrupt. However, since
our threat model does not consider adversaries that can
corrupt recipients, this property does not apply to our work.

7.2. Intra-Level Indistinguishability

The first part of our security proof is to prove that mes-
sages that traverse an honest mix node are indistinguishable
to an adversary.

We base our proof on Kuhn et al.’s security definitions.
However, our adversary model differs from Kuhn et al.’s in
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Figure 3: The structure of the inner headers. The gray numbers refer to the size of the element in bits.

that we assume trusted recipients. Therefore, we adapt their
security properties to exclude attacks based on adversarial
recipients. In addition to omitting Tail-Indistinguishability,
we modify the Layer Unlinkability (LU) property to exclude
tagging attacks on the payload. In such an attack, the
adversary modifies the payload early in the path of the onion
and detects the modification at the (adversarial) recipient.

Formally, we implement this by identifying the challenge
packet only by its header, and always outputting an unmod-
ified version of the challenge onion. Thus, the adversary
cannot use observations from a challenge packet with a
modified payload to win the LU game.

Note that in PolySphinx, the adversary can of course
modify the payload of a captured onion. However, it gains no
advantage from doing so because only the recipient can detect
the altered payload. In our adversary model, this recipient is
a trusted group member who will silently ignore the affected
packet.

Note also that header protection is required by the
properties and is implemented in PolySphinx via a MAC for
each hop in the path.

We will provide our adapted version of the LU game in
the following definition, and argue about its fitness for our
purpose:

Definition 3 (Path-Untraceability (PU) game).

1) The adversary receives the challenge public key ynj
,

chosen by the challenger, and the identifier of the
honest mix node nj .

2) The adversary may submit any number of packets O
to the challenger. The challenger sends the output
of the processed packet as a reply.

3) The adversary submits a message m, a path N =
{n0, . . . , nj , . . . , nν} with honest node at position
j (1 ≤ j ≤ ν), key pairs (xi, yi) (i ̸= j) for the
nodes, and final routing information ∆.

4) The challenger checks that the path is valid, that
the public keys correspond to the private keys and
that each node is assigned exactly one key pair. The
challenger now draws b←R {0, 1}.

5) The challenger creates a packet O with the adver-
sary’s choices of message, path and destination, as
well as a second packet O′ with a random message
m′ (|m′| = |m|), a random ∆′ (|∆′| = |∆|), and
a random, valid path N ′ that includes the subpath
from the sender to the honest node nj:

N ′ =
{
n′0, . . . , n

′
k = n0, . . . , n

′
k+j = nj , . . . , n

′
ν′

}

Given the “outer packets” O0 = O and O′
0 = O′,

we denote the “inner packets”

Oi = PROCESSPACKET(Oi−1) and
O′

i = PROCESSPACKET(O′
i−1)

6) If b = 0, the challenger gives (O0,
PROCESSPACKET(Oj)) to the adversary. If b = 1,
the challenger gives (O′

k, PROCESSPACKET(Oj))
to the adversary.

7) The adversary may submit any number of packets
O? = (h?, ξ?) with h? ̸= hj , h? ̸= h′k+j . The
challenger replies with PROCESSPACKET(O?).

8) The adversary wins the PU game if it correctly
guesses the value of b.

We say that our scheme provides PU-security if the
advantage of any PPT adversary in winning the PU game
is negligible.

Intuitively, if Path-Untraceability is achieved, then an
attacker cannot link outgoing packets to incoming packets at
an honest non-replicating node. This provides single sender
anonymity (SSA) in cases where the honest node is not
the replication node, and it is a necessary prerequisite for
reception exposure protection (REP).

We can see that the modelled adversary matches our
real-world expectations: By having access to the packets
before and after the honest node, we capture the fact that the
adversary can eavesdrop on the network traffic. By allowing
the adversary to choose the key pairs of the mix nodes, we
model the fact that the adversary can actively corrupt mix
nodes. By allowing the adversary to submit packets to the
challenger to get their processed form, we model the fact
that the adversary can inject unrelated packets at the honest
mix node and observe its behavior.

As explained above, the differences in payload tagging
ability have no consequences due to our trust assumptions.

We will make the following assumptions in our security
proof:

Assumption 1. The underlying encryption scheme ENC is
IND-CPA secure.

Assumption 2. The DDH-Assumption holds in G∗.

With these assumptions, we can give some intuition as
to why PolySphinx achieves PU: The IND-CPA security of
the underlying encryption scheme ensures that the adversary
cannot learn information from the encrypted payload, and
the DDH-Assumption tells us that she cannot learn anything
from the group elements either. Since we model our hash



functions and MACs as random oracles, the adversary also
cannot gain any information from their output values.

The full formal proof of the security is given in Appendix
B.

Theorem 1. The intra-level security of PolySphinx packets
holds for any two messages if they are either both pre- or
post-replication.

Proof. The structure of PolySphinx headers pre- and post-
replication only differs in the value and length of ∆. Since
Path-Untraceability holds for arbitrary values of ∆0 and ∆1

as long as they are of the same length, it also holds for
∆0 and ∆1 that represent an inner PolySphinx header, or a
recipient’s address.

7.3. Inter-Level Indistinguishability

In the previous section we proved that PolySphinx packets
are indistinguishable as they pass through a mix node if
they’re both either pre- or post-replication. However, the
replication node needs a closer look as it “unwraps” the
inner headers and replicates the payload, turning pre- into
post-replication packets.

We therefore define two additional games: The first game
ensures that an outgoing packet at an honest replication node
cannot be linked back to the incoming packet. This ensures
that single sender anonymity (SSA) is achieved if the honest
node is the replication node. We capture this requirement
by having an adapted version of the PU game in which the
challenger does not just encode a single path, but rather
creates p inner headers and then wraps it in an outer header
before giving it to the adversary.

Definition 4 (Multicast-Indistinguishability game).

1–2) as in Definition 3.
3) The adversary submits a message m, p paths

N0, . . . , Np−1, key pairs (xi, yi) for the nodes and
final routing information ∆0, . . . ,∆p−1 (|∆0| =
. . . = |∆p−1|).

4) as in Definition 3.
5) The challenger creates an outer packet O with inner

paths N0, . . . , Np−1, replication node nj and the
adversary’s choices of message and destination, as
well as a second packet O′ with a random message
m′ (|m′| = |m|), random ∆′

i (0 ≤ i < p, |∆′
i| =

|∆i|), and random, valid paths N ′
i (0 ≤ i < p).

The path of the outer packet must end in the honest
replication node nj in both cases.

6–8) as in Definition 3.

We say that our scheme is Multicast-Indistinguishable if
the advantage of any PPT adversary in winning the Multicast-
Indistinguishability game is negligible.

Intuitively, we expect Multicast-Indistinguishability to
hold for PolySphinx: The inner headers are previously part
of the routing information ∆, which we know is “private”

and does not help the adversary in linking packets. The IND-
CPA security of the payload encryption still holds, ensuring
that no information is leaked.

More formally, we can prove this reduction:

Theorem 2. PolySphinx achieves Multicast-
Indistinguishability (Definition 4) against a PPT adversary.

Proof. Our proof works by reduction: We show that given
an adversary A that breaks Multicast-Indistinguishability, we
can use it to construct A′ that breaks the Path-Untraceability
(PU) game for PolySphinx:

• A′ calls A to get the choices of m, Ni, and ∆i

(0 ≤ i < p).
• A′ creates p headers hi with values Ni and ∆i, as

described in Section 6.3.
• A′ concatenates the headers hi to generate the pre-

replication header H , as described in Section 6.4.
• A′ passes m, a random path N ′ and H (as ∆) to

the challenger to receive the challenge packet Oc

• Now, Oc has the same structure that a multicast
packet has in the Multicast-Indistinguishability game,
so A′ forwards Oc to A to get the guess b′.

• A′ forwards b′ to the challenger.

The second game ensures that two copies that originate
from the same incoming packet at a replication node cannot
be linked to each other. This ensures reception exposure
protection (REP) in case there is no further honest node
between the replication node and the recipient. We model
this by asking the adversary to distinguish whether two
packets have been independently created or if they originate
from a single multicast packet.

Definition 5 (Multicast-Unlinkability game). The adversary
selects two paths of mix nodes, N0 and N1, two final node
information values ∆0 and ∆1 as well as a payload m. The
challenger now chooses a random bit b and does one of two
things:

• If b = 0, the challenger creates an outer packet
with inner packets (N0,∆0,m) and (N1,∆1,m).
The challenger then processes this packet and returns
the two resulting packets (m′

0,m
′
1) to the adversary.

• If b = 1, the challenger creates two separate packets
with (N0,∆0,m) and (N1,∆1,m) and returns those
to the adversary.

The adversary should determine the value of b. The
adversary may choose the secret keys of all selected mix
nodes in N0 and N1.

Theorem 3. PolySphinx achieves Multicast-Unlinkability
(Definition 5) against a PPT adversary.

Proof. The only difference in the creation of two separate
messages versus a multicast message is how the embedded
encryption keys are generated. However, as the encryption
keys are the output of a random oracle, there’s only a 1/2κ

chance that the adversary guesses the right input. Without



the input to the random oracle, the keys are indistinguishable
from randomly chosen keys.

7.4. Header Level

Finally, we want to note that an adversary can determine
if an observed packet is pre- or post-replication. This is be-
cause PolySphinx achieves secure replication by embedding
multiple headers in the replication node’s layer. Thus, all
headers prior to replication are larger than all headers after
replication.

Without additional measures, an adversary can gain
information about a user’s activity (e.g., if the user is engaged
in group communication) by observing their outgoing traffic.
This issue can be mitigated by ensuring that sufficient cover
traffic of both packet types is sent. Once a packet has
been replicated, the resulting post-replication packets are
indistinguishable from all other post-replication packets.

7.5. Security Summary

Recall that PolySphinx specifies that the replication
node is the first node in the path. If the replication node
is malicious, but there is at least one honest mix node
between it and each recipient, PolySphinx achieves both
it’s privacy goals of single sender anonymity (SSA) and
reception exposure protection (REP) due to Theorem 1. If
the replication node is honest, PolySphinx achieves SSA and
REP, even if all other nodes are malicious due to Theorems 2
and 3.

8. Evaluation

To evaluate the performance of PolySphinx, we will
consider three different aspects:

• Encryption benchmarks to assess the computational
effort that message processing takes, especially for
larger messages.

• Overhead analysis to compare the bandwidth usage
of PolySphinx compared to previous approaches.

• Latency simulations to assess the speedup we get in
message delivery.

For a more concise evaluation, we evaluate PolySphinx
for only one replication node per path. The possibility of
arbitrary tree structures is discussed in Appendix D.2.

We note that latency and bandwidth are intertwined in
a practical mix network like Loopix [5]: Since clients send
messages at a fixed rate, they have a fixed bandwidth that
they consume. Increasing the message rate also increases
bandwidth usage, but reduces latency.

8.1. Encryption Benchmarks

We have performed encryption benchmarks to compare
the computational overhead of PolySphinx with existing
approaches and implementations. This benchmark was done
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Figure 4: Message processing/unwrapping benchmark.

to assess the computational effort required by users and
mix nodes to process a message, and to ensure that our
construction is usable in practice.

We expect PolySphinx to perform well here because
the bulk of the packet is encrypted using a symmetric AES
cipher, which benefits from hardware acceleration. This is
especially true for processing packets at mix nodes, where
there is little additional work beyond encrypting the payload.
For header generation, the sender has to do extra work to
compute all the shared secrets, which requires a lot of elliptic
curve multiplications, and to derive the keys from the key
tree. We therefore expect packet creation to be slower than
current mix formats, but still negligible compared to other
latencies.

For our benchmark, we have used an implementation
of PolySphinx in Rust, as well as the sphinxcrypto2

implementation of Sphinx. Note that any measurements for
Sphinx are also applicable to MultiSphinx, as the same
processing steps are taken in both protocols. Rust was chosen
because it provides a memory-safe, fast language, and the
Nym system is also implemented in Rust3. The benchmarks
were executed on a modern laptop4, and the results were
collected via criterion5.

For packet creation, we measured an average time of
1.56ms for PolySphinx and 0.68ms for Sphinx. For packet
processing, we benchmarked the implementation for different
payload sizes. The average time is between 110.2 µs for 512
Byte messages and 111.6 µs for 8192 Byte messages. In
comparison, the Sphinx implementation takes 112.3 µs and
113.3 µs for the same message sizes. The packet processing
results are summarized in Fig. 4.

Our benchmarks show that a practical PolySphinx imple-
mentation is fast, and that computation is not the bottleneck.
We suspect that the total communication delay is dominated
by other factors, such as the mixing delay or network delays.

2. https://crates.io/crates/sphinxcrypto — Accessed December 16, 2024
3. https://github.com/nymtech/nym — Accessed December 16, 2024
4. Lenovo Thinkpad E14 AMD G4, Ryzen 5 5625U, 16 GiB RAM
5. https://crates.io/crates/criterion — Accessed December 16, 2024

https://crates.io/crates/sphinxcrypto
https://github.com/nymtech/nym
https://crates.io/crates/criterion


8.2. Overhead Analysis

Sending messages over a mix network increases band-
width usage in two ways: First, the size of each message
is increased because the mix format adds routing overhead.
Second, cover traffic is added to obscure the sending activity.

Ignoring payload deduplication, PolySphinx increases
both of these overheads compared to Sphinx: Packets are
larger due to the inclusion of keys and subheaders. The size
of the cover traffic increases to match the size of the real
packets.

To see if the benefit of payload deduplication with
PolySphinx makes up for the increased overhead, we compare
the goodput of PolySphinx with that of Sphinx (using
sequential unicast) in different network settings. We define
goodput as the amount of payload bytes that reach the
recipients compared to the total bytes transmitted by the
sender, including cover traffic.

We expect that for small replication factors and small
payload sizes, PolySphinx reduces goodput because the
increased overhead in packets and cover traffic offsets
the savings from de-duplicating the payload. However, for
larger messages and larger replication factors, we expect
PolySphinx to produce more goodput than Sphinx because
the sender does not need to send copies of the payload.

For our evaluation, we wrote a script to compute the
expected bandwidth consumption and goodput as a function
of the send rates λP of payload messages and λC of cover
messages, the replication factor p, the payload size l, and
the fraction of multicast traffic ψ.

We set the sending rates to λP = 2 and λC = 4,
consistent with the Rollercoaster evaluation [11]. We vary ψ
to get a better understanding of how PolySphinx performs
in non-optimal scenarios (i.e., ψ < 1). While λP includes
all payload messages, ψ controls what fraction of these are
multicast messages, i.e., messages sent to multiple recipients.
In the case of PolySphinx, multicast messages are sent using
pre-replication packets. The remaining 1 − ψ are unicast
messages, sent directly using post-replication-like packets.
The cover traffic for the different PolySphinx packet sizes is
scaled accordingly. We limit our analysis to the bandwidth
and goodput of one sender because we expect the bottleneck
to be there, and we do not consider the total traffic in the
mix network.

The experiment confirms our expectations that
PolySphinx outperforms Sphinx. We see that for both
formats, the proportion of goodput in the network increases
with larger payload sizes, as the relative overhead of the
packet header decreases.

For replication factors p > 1, the goodput of PolySphinx
increases faster than that of Sphinx, and eventually overtakes
Sphinx for all parameter combinations. For example, for
p = 2, PolySphinx generates more goodput than Sphinx
for messages larger than 435 Bytes when the sender sends
only multicast messages. For p = 5, this break-even point is
reduced to 198 Bytes. These results are shown in Fig. 5.

We further evaluated different combinations of sending
rates. Increasing the amount of cover traffic per payload
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Figure 5: Share of goodput that the client sends, in relation
to the replication factor p, the payload size and different
shares of multicast traffic (fraction in parenthesis). In most
configurations, PolySphinx produces more goodput than
Sphinx, especially at high replication factors and large
payload sizes. Note that the scale of the y-axis changes.

message adds more overhead to PolySphinx than it does to
Sphinx, and thus increases the break-even point. However,
the overall shape of the goodput curves does not change,
they are simply stretched or compressed.

In addition, we can see that for favorable parameters
(a large replication factor and a large payload size), a
sender using PolySphinx can generate more goodput than the
bandwidth she consumes. This is because a single message
of her is replicated into many messages with large payloads
at the replication node, which more than compensates for
the cover traffic she needs to send.

We can say that PolySphinx improves the goodput of a
network in realistic scenarios, especially for large payloads.



For the best savings, the parameters must be chosen according
to the expected group sizes, payload sizes, and the amount
of multicast traffic in the network. Additional evaluation
comparing the bandwidth consumption and achieved sending
rates of PolySphinx and Sphinx can be found in Appendix
C.

8.3. Latency Simulation

We want to learn the average end-to-end latency of
group messages for various group sizes to assess how
well PolySphinx achieves its goal of enabling low-latency
multicast messaging.

We expect PolySphinx to perform well in small groups,
as our savings are linear: If without PolySphinx the sender
has to send n messages, with PolySphinx she now has to
send n/p messages.

For our simulations we used the simulation tool devel-
oped by Hugenroth et al.6. This tool simulates a Loopix
mix network and user behavior, and it captures the end-to-
end latencies of messages sent between group members. We
extended the tool to support a PolySphinx-like distribution
scheme and simulated 24 hours of mix network activity. We
chose a group size of 25 as a minimum, as it is common
in real-world environments [10], as well as some larger
group sizes to analyze scaling behavior and to match the
Rollercoaster simulations.

We compare PolySphinx to Rollercoaster as well as a
naı̈ve baseline where each users sends multiple packets per
round. We note that we normalize the sending rates for
PolySphinx and Rollercoaster to have the same bandwidth
— that is, we assume a bandwidth of 6 Sphinx packets
with 3KiB of payload per second (matching the default
Rollercoaster setup of 2 payload messages, 2 drop messages
and 2 loop messages per second), and adjust the PolySphinx
sending rates to match the same bandwidth usage. The
baseline is not normalized for bandwidth and instead serves
as a comparison point for optimal linear scaling.

In the simulated scenario, we assume that all protocol
participants are always online. While the on/offline behavior
of the participants does not affect PolySphinx, it does affect
our comparison to Rollercoaster. Therefore, we chose the
scenario where Rollercoaster performs best.

Our results show that for the smallest simulated group
size of 25, the average latency drops from 6.1 s± 8.6ms
(± standard error of the mean) using Rollercoaster to
4.1 s± 6.9ms using PolySphinx, in a group of 32 from
6.4 s± 7.6ms to 4.6 s± 7.1ms and in a group of 64
from 7.1 s± 6.8ms to 5.7 s± 7.6ms. For larger groups,
Rollercoaster can provide lower average latencies: With
128 members, Rollercoaster achieves 9.0 s± 4.6ms ver-
sus PolySphinx’s 12.0 s± 10.6ms, and with 256 members,
Rollercoaster achieves 10.5 s± 3.6ms versus PolySphinx’s
21.8 s± 13.9ms. These results are also summarized in
Fig. 6.

6. https://github.com/lambdapioneer/rollercoaster — Accessed December
16, 2024

Note that we have omitted a comparison with Multi-
Sphinx as well as Rollercoaster-with-MultiSphinx. As we
normalize for bandwidth, MultiSphinx does not provide an
advantage over Sphinx other than reducing the total number
of packets sent. The simulation published with Rollercoaster
disregards this, as it normalizes for outgoing message rate
instead [11].

We can therefore say that PolySphinx reduces the latency
of group messages in small to medium-sized groups. While
PolySphinx has larger packets than Sphinx leading to a
decreased sending rate, this is compensated for by the fact
that a single message is replicated to multiple recipients
at the replication node. To provide good scaling for large
groups, we refer to Appendix D.1 for a discussion of a
combination of PolySphinx and Rollercoaster.

9. Conclusion

Efficient anonymous group messaging is difficult, and
existing solutions do not provide the desired guarantees of
anonymity, efficiency, or scalability. We present the new
PolySphinx design based on the idea of mix networks and
replication nodes: Instead of naı̈vely having the sender
perform message replication, we offload this task to a mix
node, thereby reducing bandwidth consumption for the sender
and improving message latency.

In designing PolySphinx, we must ensure that the repli-
cation mechanism does not leak any information about the
sender or recipients to the replication node, since we must
assume that this node can be corrupted by the adversary. This
rules out simple solutions such as having the replication node
create new onion-encrypted packets. We solve this challenge
by having the sender prepare most of the necessary parts, and
providing the replication node with precomputed headers and
key material to use. We formally show that our construction
produces packets that are indistinguishable to an adversary.

Using the Hugenroth et al. simulator, we evaluated the
performance of PolySphinx in practice. For a realistic group
size of 25 [10], we can reduce the end-to-end latency from
6.1 s using Rollercoaster to 4.1 s, and we increase goodput
compared to the naı̈ve approach for all messages larger than
198B. The latency savings over Rollercoaster diminish with
increasing group size, and break even at about 128 members.

The simulations, along with the benchmarks and overhead
evaluations, show that PolySphinx provides an efficient way
to add multicast messaging to mix networks, significantly
reducing latency and bandwidth overhead. This enables the
implementation of efficient group communication services
such as messaging and media sharing applications in anony-
mous contexts.
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Availability

We have uploaded the code for this paper to https:
//github.com/PolySphinx. This includes our PolySphinx im-
plementation in Rust, the code for the benchmarks, the
extended version of the simulator from Hugenroth et al.
and the Jupyter notebooks used to do the overhead analysis.
An overview of our API is given in Appendix E.
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Meaning Meaning

0k Bit string of k zero bits u User
B Decrypted routing data U Set of all users
f∗ Flag bytes xn Mix node private key
g DH group generator yn Mix node public key
G DH group α Sphinx group element

G∗ DH group without identity β Packet routing data
h∗ Hash functions γ Packet MAC tag
K Key tree ∆ Final routing data
l Payload size (bits) σi Node encryption key
m Message κ Security parameter
n Mix node identifier λ∗ Sending rates
N Set of all mix nodes µ MAC
O Onion-wrapped packet ν Path length of the packet
p Replication factor ξ Packet payload

pi,j Single path choice in Pi ρ Pseudorandom generator
Pi Path choices for a packet τ Length of the header
r Maximum path length ϕ Filler string
ri i’th recipient ψ Fraction of multicast traffic
S Key tree seed

TABLE 1: Notation overview

Appendix A.
Notation

An overview of the symbols used is provided in Table 1.

Appendix B.
Security Proof

We prove that PolySphinx achieves PU via a hybrid
argument over five games. In this process, we will show
that we can modify the PU game gradually to remove any
values from the packets that could make them distinguishable,
arriving at a game that provides no information that could
give the adversary any advantage. We also show that our
adversary cannot distinguish those modified games, and
therefore, it must also have at most a negligible advantage
in the original PU game.

The games of our proof are as follows, each game having
a slight modification to the previous one:

Hybrid (Path-Untraceability). In game H0, the challenger
creates the header and message as specified in PolySphinx,
without changes.

Hybrid. In game H1, the challenger modifies the creation
process and replaces the keys from the key tree with randomly
chosen values.

Since PROCESSPACKET only uses those embedded
keys, there is no need to further modify the behavior of
PROCESSPACKET or the mix nodes.

Hybrid. In game H2, the challenger changes the way the
shared secret at the honest node is computed and chooses
sj ←R G∗ instead of using sj = y

xb0...bj−1
nj .

In step 6 of the game, we modify PROCESSPACKET to
use the new value sj to process the challenge packet at node
nj .

This is equivalent to G1 in the Sphinx proof.

Hybrid. In game H3, the challenger further modifies the
creation process to not include proper encryptions of the
message payload, but instead output the encryption of random
bytes as payload, therefore removing any information that
the payload might have carried.

Since the content of a packet has no influence on its
processing at a mix node, there is no need to further modify
the behavior.

Hybrid (Ideal World). In game H4, the challenger replaces
the header values βj and γj with random values, and saves
the original values as β′

j and γ′j .
We modify PROCESSPACKET that if βj is given, it will

reject the packet if the extracted MAC does not equal γj ,
and it will internally use β′

j to process the packet.
This is equivalent to G2 in the Sphinx proof.

We now begin the hybrid argument by showing that for
any PPT adversary, each of the above games is indistinguish-
able (up to a negligible probability) from its predecessor:

Lemma 1. No PPT adversary can distinguish H1 from H0.

Proof. In H0, the key that the sender embeds for the mix
node is the hash of a key tree node, H(K [. . .]). In H1, it is
a random value. Since we model hash functions as random
oracles, the only way to distinguish between those two cases
is if the adversary knows the input to the hash function.
However, K [. . .] itself is either the output of a random
oracle, or the randomly chosen initial seed — neither of
which is embedded in the message.

As the adversary cannot distinguish between the output
of a random oracle with unknown input, and a randomly
chosen value, the adversary also cannot distinguish H1 and
H0.

Lemma 2. No PPT adversary can distinguish H2 from H1.

Proof. The difference between H2 and H1 is the way in
which the shared secret is calculated. If a distinguisher D
exists that could differentiate between those two games, we
could use it to construct a DDH distinguisher DDDH:

• DDDH receives the challenge tuple (p, q, r).
• DDDH generates a key pair xj ←R Z∗

q , yj = gxj .
• DDDH passes yj as the challenge public key to D to

receive the values for m, N and ∆.
• DDDH constructs a PolySphinx packet using q as the

j’th Sphinx group element (αj = q) and r as the
j’th shared secret (sj = r), and the values of m, N
and ∆.

• DDDH now passes the constructed message to D and
receives the response bit b.

• DDDH passes b to its challenger.
• Any valid oracle queries for PROCESSPACKET can

be answered by DDDH by using the private key xj .

As per Assumption 2 however, no such distinguisher
DDDH can exist, and therefore the two games are indistin-
guishable.

We note that the adversary cannot use the oracle to gain
an advantage, as passing the challenge message is forbidden,



and constructing a different message (α, β′, γ) would require
it to forge the MAC — which would require knowledge of
the shared secret.

Lemma 3. No PPT adversary can distinguish H3 from H2.

Proof. The only difference between H3 and H2 is the fact
that in H3, random bytes are encrypted instead of the actual
payload.

If a distinguisher D exists that could differentiate between
those two games, we could use it to construct an IND-CPA
distinguisher DIND:

• DIND generates a key pair xj ←R Z∗
q , yj = gxj and

a random node identifier nj .
• DIND sends yj as the challenge public key to D.
• DIND receives from D the choices of m0, the path

N0 = {n0, . . . , nν−1} and ∆0.
• DIND draws a message m1 randomly with |m1| =
|m0|.

• DIND forwards m0, m1 to the IND challenger and
receives the challenge c.

• DIND creates a PolySphinx header
h = CREATEHEADER(N0,∆0) and then sends
(h, c) to D.

• DIND receives the guess b from D and forwards it
to the IND challenger.

• Any valid oracle queries for PROCESSPACKET can
be answered by DIND by using the private key xj .

We note that DIND “acts” as if the secret key that the
challenger uses internally is the first randomly drawn key
in H1. Since the key is never exposed to the adversary, the
adversary cannot know whether DIND actually has the key.

Our DIND would win as often as D, however no such
distinguisher DIND can exist per Assumption 1. Therefore D
can not exist and the two games are indistinguishable.

Lemma 4. No PPT adversary can distinguish H4 from H3.

Proof. Per definition, β is combined with the output of a
pseudorandom generator ρ and as such indistinguishable from
randomness. Likewise, µ is the output of a random oracle
with a random input key and therefore indistinguishable from
randomness as well.

Lemma 5. No adversary can have a non-negligible advan-
tage to win H4.

Proof. No value in the header or payload of the packet in H4

is dependent on the challenge bit b. Therefore, no adversary
can have an advantage over random chance.

Theorem 4. PolySphinx fulfills the definition of Path-
Untraceability from Definition 3 under Assumption 1 and
Assumption 2.

Proof. The proof follows from Lemma 1 – Lemma 5.
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Figure 7: Bandwidth consumption of PolySphinx and Sphinx
for comparable sending rates. The number in parenthesis
gives the share of multicast packets.

Appendix C.
Extended Evaluation

The evaluation in Section 8.2 compares PolySphinx
and Sphinx in terms of the goodput share of the total
bandwidth, assuming that sending rates are constant. We
see that PolySphinx produces a bigger share of goodput, but
the overall bandwidth consumption increases as well.

Therefore, we provide the raw bandwidth values for
PolySphinx and Sphinx in Fig. 7. We can see that the
bandwidth increases for both formats, but the increase for
Sphinx is way steeper: As the sender has to send p copies
of the payload, increasing the size of the payload leads to a
p-fold bandwidth increase.

In addition to evaluating goodput and bandwidth, we
further evaluate how many messages PolySphinx can send
given a constant bandwidth limit that must not be exceeded.

We expect that using PolySphinx means that less packets
can be sent due to the increased packet size, but due to the
replication mechanism, a single packet will result in multiple
payload packets. This mechanism makes up for the decreased
sending rate.

For this part of the evaluation, we change our experiment
slightly: Instead of fixing the sending rates, we now assume
a fixed bandwidth at the sender’s link and calculate how
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Figure 8: Number of messages sent per second for a fixed
bandwidth of 1 KiB

s and a payload size of 512B.

many packets (Sphinx or PolySphinx) she can send using
that bandwidth. Out of those packets, we consider 1/3 to be
payload messages, and 2/3 to be cover traffic, which is in
line with the payload to cover ratio in Section 8.2. We then
vary the remaining parameters, i.e. the payload size l, the
replication factor p and the share of multicast traffic ψ.

Our results show that the number of payload packets
that PolySphinx produces quickly surpasses the number of
payload packets that Sphinx produces when multicast is used.
For a bandwidth limit of 1 KiB

s , a payload size of l = 512B
and a replication factor of p = 2, PolySphinx produces
more payload packets when around half of the packets are
multicast packets. For bigger replication factors and payload
sizes, PolySphinx performs even better.

The detailed results for our experiment with 1 KiB
s and

l = 512B are shown in Fig. 8. In addition, we provide Fig. 9
with an overview of how the improvement increases when
increasing the payload size and the replication factor.

In summary, we can say that our extended evaluation
confirms our previous findings. Figure 10 shows a summary
for which parameter combinations PolySphinx performs
better than Sphinx, for comparable sending rates.
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Appendix D.
Extensions

There are multiple ways to extend PolySphinx, to make it
more efficient, more flexible, or more practical. In this section,
we want to describe possible extensions that could be a part
of future work or practical PolySphinx implementations.



Packet Format Description
Sphinx Base Format
MultiSphinx Combines multiple Sphinx packets into one
PolySphinx Deduplicates payload for multicast packets

Sending Strategy
Sequential Unicast Replicate all copies at the sender
Rollercoaster Group members help with distribution

TABLE 2: Categorization of Rollercoaster and PolySphinx
as orthogonal technologies.

D.1. Combining Rollercoaster and PolySphinx

Rollercoaster and PolySphinx are two orthogonal tech-
niques: Rollercoaster can be thought of as a sending strategy,
while PolySphinx is a mix format. The sending strategy
defines the order in which the messages are sent, while the
format defines how the messages are packed. Examples of
this categorization are shown in Table 2.

Currently, we compare Rollercoaster combined with
(Multi)Sphinx [11] and sequential unicast combined with
PolySphinx. A system combining Rollercoaster with
PolySphinx inherits the advantages of both: It scales well
for large groups by distributing the sending tasks among the
group members, and each member sends the payload only
once by using the multicast feature of PolySphinx.

However, Rollercoaster requires a small amount of data
per recipient, different in each payload, to signal the role that
the recipient should play in the distribution of the message.
Therefore, a slight modification to PolySphinx is necessary
to allow a small amount of data to be sent to each recipient
individually in the header.

The performance evaluation and security aspects of such
a combined system are interesting future work.

D.2. Nesting PolySphinx Arbitrarily

Instead of using one replication node only, it is possible
to extend the idea of PolySphinx and allow arbitrary nest-
ing. Generalizing the post- and pre-replication packets, we
introduce the concept of “levels”, denoted as λ. The post-
replication packets then correspond to a level of λ = 0, while
the pre-replication packets correspond to a level of λ = 1. A
packet of level λ = i (i > 0) is split into p packets of level
λ = i− 1, each of which is later split into p packets again
(if i > 1). This allows a single packet from the sender to
reach pλ recipients without the need for duplicated payloads.

The downside of this approach is that the different levels
are distinguishable by packet size. This means that the
network needs to have more cover traffic to accommodate
all possible levels in the system, or each packet needs to be
padded to the same size (e.g., via dummy recipients).

An evaluation of such a system needs to account for the
increased overhead in cover traffic when comparing arbitrary
nesting. Building and evaluating a system that is tailored to
a specific distribution of multicast traffic is an interesting
challenge for future work.

Furthermore, the threat model becomes more complicated
as we now have different segments between the sender and
the first replication node, the first replication node and the
second replication node, . . . , and the last replication node
and the recipient. Analyzing the different possible locations
for honest nodes, as well as which properties of the group
communication they protect, provides further directions for
research.

Appendix E.
API

We provide an implementation of the PolySphinx format
in Rust. This implementation allows an user to create
PolySphinx headers and packets and use them as a base
for a mix network. In this section, we give a quick overview
over the (simplified) interface to our PolySphinx library.

To represent paths through the mix network, we introduce
the Path type:

enum Path {
Direct(Vec<Mixnode>, Recipient),
Multi(Vec<Mixnode>, Vec<(Mixnode, Path)>),

}

A Direct path represents a path through the mix
network with a single recipient at the end, while a Multi
path represents a path to a replication node, with a number
of “inner” paths.

The main interface consists of two functions, representing
the algorithms described in Section 6.4 and Section 6.5:

fn create_polyheader(path: &Path)
-> Result<(Header, EncryptionKey)>

fn unwrap_header(priv_key: &PrivateKey, header:
&Header)↪→

-> Result<Command>

The first function create_polyheader implements
the functionality to create a (possibly nested) header for a
given path through the mix network. It draws a random seed
for the key tree and recursively creates the inner headers. The
return values are the created header and the first encryption
key, which can be used to prepare the packet’s payload.

The second function unwrap_header implements the
decryption of a layer of the header given a node’s private
key. The return value depends on the node’s task: It can be
a Command::Relay, a Command::Destination or
a Command::Multicast — similar to the possibilities
described in Section 6.5.

To aid the implementation of clients and mix nodes, we
also provide functions that deal with the payload encryption:

pub fn prepare_payload(key: &EncryptionKey, data:
&[u8]) -> Result<Vec<u8>>;↪→

pub fn recrypt_payload(key: &EncryptionKey, data:
&[u8]) -> Result<Vec<u8>>;↪→

pub fn decrypt_payload(key: &DecryptionKey, data:
&[u8]) -> Result<Vec<u8>>;↪→



Appendix F.
Meta-Review

F.1. Summary

This paper presents a new mix-net package format,
PolySphinx, that can be used for efficient multi casting in
mix networks for mix networks. Multi casting is particularly
important for group communication where users send the
same message to all other users in the group. When using
PolySphinx a special mix-net node – instead of the client –
is responsible for replicating the package, reducing latency
for receivers and bandwidth consumption for the client.

F.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

F.3. Reasons for Acceptance

1) This paper constructs an interesting new method for
letting a mix-node create p independently routed
copies of a single broadcast message. Prior work
either replicated the entire package, including pay-
load, resulting in no reduction in communication
cost; or instead relied on other recipients to forward
messages.

2) Performance evaluations of the new proposal con-
firm practical performance of the new package
format in the setting of group communication,
especially when the group size is not too big.

3) The paper includes a privacy proof that shows that
the desired properties of the original Sphinx package
format are maintained by PolySphinx.
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