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Abstract—Quantization, and the fact that channel character-
istics are independent and identically distributed so far have
received only little attention in reports about actual implementa-
tions of physical layer key generation schemes. They are merely
assumed for channel reciprocity based key generation, although
the secret key generation significantly relies on them.
We set out to design a quantization preprocessing as well as
an online quantization scheme which favours i.i.d. and uniform
distribution of the generated values to achieve high entropy and
key rates, and calculate the resulting mutual information between
communication partners in a large, realistic measurement study.
Our experiments indicate a remarkable increase in mutual infor-
mation, and underline the applicability to various quantization
and key generation schemes.

Index Terms—Physical Layer Security, PhySec, Channel Reci-
procity based Key Generation, Secret Key Generation, Quanti-
zation

I. INTRODUCTION

Physical Layer Security (PhySec) is an actively discussed
and promising contender for energy-efficient secure wireless
communication [20], [26]. One direction of PhySec aims at
secure key generation (SKG) between two legitimate commu-
nicating parties Alice and Bob, relying on the exclusivity of
the characteristics of their shared channel. Both parties per-
form noisy and somewhat diverging measurements of realisa-
tions of the common randomness, and implementing Channel
Reciprocity-based Key Generation (CRKG), they agree on a
shared secret key [28].

PhySec key establishment protocols have been formally
analysed, and their information theoretical security is proven
[4]. The proofs rely on three major assumptions regarding
the input values, i.e., the bit sequences obtained from the
channel estimates: reciprocity between the legitimate partners,
an independent identical distribution (i.i.d), and high entropy
[5]. Reciprocity is needed in order to generate matching keys
between Alice and Bob. The channel reciprocity theorem
covers this assumption and states that reciprocity is given
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for their common channel [25]. The obtained measurements
should to be i.i.d. in order to prevent predictability of future
values from existing ones, which would result in predictable
and, thereby, insecure key material. The entropy of the input
values should be as close as possible to the maximum to
deliver sufficient innovative bits as key material. Low entropy
would either result in predictable key bits or in a low secret key
rate. In order to maximise the entropy, a uniform distribution
of the input values should be targeted [6]. In conclusion, these
three requirements are crucial for CRKG.

The quantization step transforms the obtained measurements
to bit vectors. It hence is the natural step in the PhySec
SKG to optimize towards these requirements. In conventional
transmission processes, a quantization scheme intends to re-
construct the original samples as good as possible from the
potentially noisy transmission. As CRKG aims to extract
random channel characteristics by treating the obtained values
as a source of randomness, this approach does not fit.

Since the subsequent steps for SKG can only reduce the
available entropy and, thereby, the effective key rate, the quan-
tization should leverage as much randomness with high en-
tropy as possible. Furthermore, the quantization can facilitate
an independent distribution in time by decoupling the channel
characteristics from the obtained samples. In combination, the
quantization step is a suitable point to yield independent and
uniformly distributed input values.

Existing approaches tend to rely on global knowledge,
i.e., they use the average over all measurements to define a
threshold for quantization. Since SKG works with subsequent
channel measurements, this global knowledge is an unrealistic
assumption. To avoid its use, several existing schemes use
buffering of data points [2], [17], [24], [12], [16]. Thereby,
local knowledge is created, on which similar calculations
can be performed. Buffering comes with the disadvantage of
performance hits – since the protocol flow has to wait until
the next buffer frame is filled, the effective performance drops.
We hence suggest to avoid buffering and use the subsequent
measurements directly.

Current implementations do not fully consider the whole
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potential of the quantization step within the CRKG process.
Therefore, we propose a new preprocessing step for quanti-
zation, which extracts the random channel characteristics. We
additionally propose a new quantization scheme that provides
uniformly distributed resulting values. A further advantage of
the proposed processing steps is its online nature: Each new
measurement is treated independently or only with knowledge
of previous values. This allows to instantaneously start the
SKG process as soon as the measurements are taken. Hence,
no global knowledge or buffering is needed as in existing
approaches.

We have evaluated our schemes against related methods
(e.g.,[2], [17], [24]) with focus on the three major requirements
for CRKG: i.i.d input values, their high entropy and reci-
procity. The independence of the bit strings is assessed via the
autocorrelation of the sequences. Entropy and reciprocity are
evaluated via the mutual information between the legitimate
partners. The results of our evaluation confirmed the suitability
of the suggested approaches.

In this paper, we make the following contributions:
• introduction of a new online quantization scheme target-

ing high entropy through a uniform distribution,
• introduction of a new online preprocessing approach to

effectively extract the channel characteristics,
• in depth analysis of main parameters of these schemes,
• comparison against existing approaches via real world

measurements, especially regarding the entropy and dis-
tribution of the resulting bit vectors.

The remaining paper is structured as follows: Section II
describes the CRKG system model and its general assump-
tions. Section III analyses state of the art implementations and
their quantization. In Section IV, the new preprocessing and
quantization approaches are introduced. Section V discusses
the evaluation setup and the resulting findings. Section VI
summarizes and gives an outlook.

II. BACKGROUND

CRKG is an implementation of the source model of PhySec
SKG described by Maurer and Ahlswede [18], [1], which
intends to derive symmetric keys in the presence of a passive
attacker. Two legitimate parties and an eavesdropper observe
three different observations X , Y , Z from a common distri-
bution PXY Z of a random variable. By exchanging messages
over an authenticated noiseless public channel, the legitimate
partners can derive a common secret key from these observa-
tions unbeknownst to the eavesdropper. This exchange is di-
vided into 4 steps: randomness sharing, advantage distillation,
information reconciliation, and privacy amplification [4].

It has been proven that this procedure is information the-
oretically secure and that protocols fulfilling the respective
requirements do exist [4]. Additionally, these proofs also
hold, if the eavesdropper has additional knowledge about the
channel by visual inspection of the environment or even by
measuring the room itself. Furthermore, it was shown that this
process requires significantly less energy than traditional key
exchange primitives like ECDH [26].

Alice Bob
hAB

hBA

Eve

hAE
hBE

Fig. 1. Generic system model for CRKG: Alice and Bob measure the
reciprocal channel and thereby obtain their estimates ĥAB and ĥBA. Eve
overhears this communication and estimates her own channels ĥAE and ĥBE .

In general, the legitimate nodes Alice and Bob exchange
messages over their channel (Fig. 1). Each partner measures
the relevant channel characteristics of the received signals to
determine the channel estimates ĥAB and ĥBA

1. In parallel,
Eve listens to all transmissions and measures the same metrics
as Alice and Bob. Thereby, she can estimate the channels ĥAE

and ĥBE . Following the reciprocity assumption, the channels
ĥAB and ĥBA are highly correlated, whereas ĥAB and ĥAE

(resp. ĥBA, ĥBE) are less correlated. Thus, Alice and Bob
see roughly the same, whereas Eve sees a statistically totally
different channel. Mathur et al. [17] claim that a distance of
half a wavelength λ is sufficient to alter Eves channel estimates
in such a way, that no inference to ĥAB and ĥBA is possible.
This phenomenon originates from Jakes uniform scattering
model and is called spatial decorrelation [8]2.

Since Eve cannot extrapolate the channel characteristics of
ĥAB from her observations, these properties can subsequently
be used as input for key generation.

Quantization of the observed measurements belongs to the
randomness sharing step. The quantization can further be
divided into the quantization decision and a possible prepro-
cessing. In general, the preprocessing is a function f : Rn →
Rn, which operates directly on the measurement values. The
successive quantization transforms the analogue, time-discrete
input measures into bits as a function f : Rn → {0, 1}m.

Each measurement acquired from the channel is denoted
as xt. Here, t denotes the start time of the measuring.
Subsequently, n data points are recorded and composed into
the vector xt = (x1t , x

2
t , . . . , x

n
t ), x

i
t ∈ R. The preprocessing

transforms xt into the vector x∗t , which is in turn quantized
into a bit string bt = (b1t , b

2
t , . . . , b

m
t ), bit ∈ {0, 1}.

This bitstring is the final result of the quantization and will
then be passed into the upcoming processing step. It is impor-
tant to notice, that the conversion from measurement values
into bit vectors also implicitly transforms their distribution.
Hence, the quantization dictates the distribution of the input
values for the whole CRKG process. Therefore, it is crucial
for the whole process that this input values are in conformity
with the assumed properties.

Furthermore, it is important to notice that this quantization
does not target the transmitted signals but the random channel
characteristics. Hence, it is inherently different to traditional

1Actually, the channels are time-dependent (ĥXY (t)). This time variation
can be well modelled as an additional additive channel estimation error and is
therefore included in our model. The notation is only omitted due to brevity.

2This assumption is quite accepted, but it may not be fulfilled in reality [23].
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signal estimation and quantization, which has been studied
thoroughly and is well understood.

III. STATE OF THE ART

Since this work targets quantization, the related work is
selected and examined with a special focus towards this step.

Existing CRKG schemes mainly focus on the protocol steps
after the quantization (Sec. II). None of the presented works
explicitly targets a uniform distribution or high entropy of the
extracted randomness via optimization of the quantization step.

Further, current schemes are slow (< 2 bits/s, [10]) com-
pared to the proposed use as pseudo one time pad [15]. Hence,
the performance of all protocol steps should be improved.

In general, existing CRKG implementations can be divided
into two groups according to the channel characteristics used:
either the received signal strength indicator (RSSI) or the com-
plex channel state information (CSI). Both values represent,
with different resolution, the transmitted energy, which was
distorted during the transmission.

The RSSI value is a single value representing the qualitative
signal strength of the whole received transmission. Thus, only
few data points can be obtained from a single measurement.
But this value is very common within hardware implemen-
tations, hence, even common off-the-shelf (COTS) hardware
delivers it to higher layers. Scheme using this value (e.g.,
[2], [17], [12]) apply a common approach for quantization:
Several measurements (e.g., 384) are buffered and the mean or
median is defined as threshold for 1-bit quantization. Wallace
and Sharma [24] expanded this scheme to MIMO systems.

The CSI includes all information about the transmission,
hence, a single measurement yields much more data points
for further usage. Obtaining the CSI is considered a rather
specialized use case, for which in general customized hardware
is needed. Nevertheless, there are efforts to make this informa-
tion available on commodity hardware (e.g., Intel 5300 NIC
[11]). CSI-based schemes like [16] and [27] also use buffering
to calculate a threshold based on the Cumulative Distribution
Function.

These quantization approaches are all based on the com-
mon idea to buffer several measurements to calculate statis-
tics, hence, they are not considered online. Tope and
McEachen [22] proposed an online scheme which uses the
difference of consecutive RSSI values as reciprocal charac-
teristic. However, this procedure produces low entropy key
material and is thereby susceptible to attacks [12].

There are two major aspects of CRKG schemes: First,
buffering is widely used, albeit it inherently introduces delays.
Second, none of them evaluates the quantization step with
respect to the requirements mentioned in Sec. II. Since this
influence is neglected, the quantization schemes could no be
optimized towards the fulfillment of those requirements.

IV. APPROACH DESIGN

To address the mentioned open points, we introduce a
novel preprocessing step as well as two new quantization

approaches. All of them work online and are designed to fully
comply with the CRKG requirements.

Since efforts like [11] make CSI available on COTS hard-
ware, we will focus on the usage of CSI.

Tab. I shows the notation used in the following.

TABLE I
VARIABLES USED

t point in time θ quantization threshold

xt
vector of measurement at t n length of vector xt
channel estimation at t st sliding window at t

x∗t preprocessed vector w window size
bt resulting bit vector m quantization width

A. Preprocessing

Channel Characteristics Estimation – CCE
The CRKG process relies on reciprocal channel character-
istics, which vary when the channel changes. In general,
these alternating characteristics are small compared to the
overall channel estimate. Hence, the straight forward approach
of applying the quantization directly on the whole channel
estimate is biased by the magnitude of the estimate. In order
to diminish this bias, the smaller channel characteristics need
to be extracted from the total channel estimate.

To achieve this separation, we propose the following new
preprocessing step: The overall channel estimate is interpreted
as a composite of a static part (for the current situation) and
the “interesting” characteristics. The static component will
be approximated and subsequently deduct from the channel
estimation. Thereby, the reciprocal channel characteristics will
be extracted from the remaining part as well as normalized.
This result is then passed on to the remaining CRKG steps.

For the approximation of the static part, we propose to apply
a moving average over the last w measurements. The moving
average is chosen because it is easy to implement in hardware
while still delivering high estimation performance [21].

sit = avg(xit, x
i
t−1, . . . , x

i
t−w), i ∈ {1, 2, . . . , n} (1)

st = (s1t , s
2
t , . . . , s

n
t ), s

i
t ∈ R (2)

x∗t = xt − st (3)

To summarize, we first approximate the static part st at time
t by applying the moving average to each data point within
a measurement over the last w measurements (Eq. (1)). The
averaging function avg is either the arithmetic mean or the
median. In Eq. (3), this approximation st is deduct from the
obtained measurements xt. The resulting vector x∗t represents
the channel characteristics at time t.

B. Quantization

In general, quantization defines one or more thresholds
θ, which divide the domain of the quantization function in
different ranges. These ranges are subsequently labelled with
the targeted bit strings (e.g. through Gray codes [9]). In our
scenario, only 1 bit quantization was considered, hence, only a
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single threshold θ is needed. We quantize by setting values ≥ θ
to 1 and values < θ to 0. Quantizing schemes aiming for more
than 1 bit can easily be deduced from this base case. More
advanced quantizer (e.g., vector quantizer using the Max Lloyd
algorithm) are unsuitable for the current use case because of
their increased complexity [7]. In the subsequent description,
the averaging function avg may be again the arithmetic mean
or the median.

Local Moving Average – LMA
The reasoning for the CCE preprocessing can also be applied
to the quantization decision per se. Hence, the static part st is
again estimated by applying a moving average over the last w
measurements. The resulting values are then used as thresholds
for each sample.

θt = (θ1t , θ
2
t , . . . , θ

n
t ) (4)

θit = avg(xit, x
i
t−1, . . . , x

i
t−w), i ∈ {1..n} (5)

This quantization approach is effectively the proposed CCE
scheme used as threshold determination. Hence, it is expected
that their combination will not yield large improvements.
Nevertheless, it is still considered as quantization scheme in
order to compare its performance against the other approaches.

Results Based Adaption – RBA
The idea of RBA is to adapt the quantization decision so that
its outcome is as close as possible to the uniform distribution.

This is realised by adapting the threshold θ based on the
resulting number of zeros and ones after quantization. The
underlying assumption is that the threshold is biased towards
one side, if either outnumbers the other. Hence, the threshold
needs to be adapted towards the opposite direction (8).

The width of the adaption is reduced in every step in order
to converge towards an “optimal” value. After reducing the
step size for 8 steps, it is kept stable for further adaptions -
this aims for a quick convergence towards the optimal value
without neglecting later values through too small step sizes.

yt = α · avg(x1t , x2t , . . . , xnt ) (6)

α =

{
1
2t if t ∈ {0, 1, 2, . . . , 8}
1
28 if t > 8

(7)

θt =


yt if t = 0

θt−1 − yt if |{bit−1 = 0, i ∈ {1, 2, . . . , n}}| > bn2 c
θt−1 + yt if |{bit−1 = 0, i ∈ {1, 2, . . . , n}}| < bn2 c
θt−1 if |{bit−1 = 0, i ∈ {1, 2, . . . , n}}| = bn2 c

(8)

C. Sliding window size

The proposed mechanism has two major parameters: the
averaging function used and the size of the “window” w.
The median was chosen as averaging function, because of its
robustness against outliers. The window size was determined
by the following analysis of the measurements.

Since the obtained measurements describe the channels be-
tween Alice and Bob, they inherently vary strongly in between
them. According to the channel model, these measurements are

Fig. 2. Resulting standard deviation with respect to the window size used
w = {1, 2, . . . , 20}

interpreted as events of a Gaussian distribution. To evaluate the
stability of a given window size w, we took a sample of size
w from the realisations of this distribution and calculated the
selected average function. Then we computed the difference
between this average and all observations outside of the current
sample. The resulting estimation of the random, reciprocal part
of the transmission is also expected to also be a Normal dis-
tribution, since this differencing does not alter the underlying
distribution. Finally, we computed the standard deviation for
each sequence of differences w.r.t. to the window size w.

Fig. 2 shows these standard deviations for w =
{1, 2, . . . , 20}. It is visible that the deviation decreases after
the first peak, which denotes the convergence towards the
“true” average. Further, the decrease is only minimal for
w > 6, depicting that a stable solution has been found.

It has to be noted that the values depend on the current
system setup. Altering the setup would probably result in
different progressions. However, determine w again for each
new situation would not scale. Thus, we suggest to settle on a
value, which balances resource usage and generality – being
big enough to retain generality claims, but also being small
enough to only use a reasonable amount of resources.

V. EVALUATION

The evaluation targets the three main requirements for the
input sequences originating from the assumptions described
in Section I. Hence, as evaluation metrics the mutual infor-
mation between Alice and Bob and the autocorrelation of the
respective single sequences were chosen.

The mutual information is defined as:

I(A;B) = H(A) +H(B)−H(A,B) (9)

=
∑
a∈A

∑
b∈B

p(a, b) · log p(a, b)

p(a)p(b)
(10)

Here, A and B denote the quantized random bit sequences
derived by Alice and Bob from the channel estimates. I(A;B)
incorporates the two major components of the key establish-
ment. On the one hand, the innovativeness of the single source
is included through the entropy of each sequence. On the other
hand, the reciprocity is included by means of the common
distribution (in turn the joint entropy) of both sequences.

Further, the mutual information also represents the maximal
achievable secure key generation rate. This rate is defined in
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relation to Eves sequence (E):

Cs ≤ min(I(A;B), I(A,B|E)) (11)

Following the decorrelation arguments from Sec. II, we assume
I(A,B|E)) = 0. Hence, I(A;B) between Alice and Bob
represents the maximal secure key rate [4]. Since the secret
key rate is only governed by I(A;B), this metric will also be
used to evaluate the security of the new schemes.

For the autocorrelation, the sequence of quantized bit strings
is interpreted as stochastic process, on which the Pearson
correlation with itself is calculated for different lags. If the
sequence is i.i.d., the autocorrelation peaks at the offset 0. All
other offsets will yield significantly lower correlation values.

The obtained measurements are subsequent data points in
the time domain. Evaluation will be done in this domain
(TIME) and in the frequency domain (FREQ). Processing the
data within the frequency domain is reasonable, since current
transmission protocols us this domain for multiplexing or
modulation. Processing within the time domain is reasonable,
since it might result in higher information rates as stated by
the data processing inequality [3], [13].

For the evaluation of our newly proposed schemes, we
also implemented the following baseline approach. In Mea-
surement Average – IMA: This method applies an average
function over the current measurement and sets the threshold
according to the output: θt = avg(x1t , x

2
t , . . . , x

n
t ). Using this

approach with the median as averaging function is the most
common amongst the related work.

Applying this method over all available measurements
would be what was called quantization with global knowledge.
Using this scheme with subsets of the available measurements
is equal to buffering approaches like [17], [2], [24]. The au-
thors of [10] define it as a baseline for quantization processes.
All approaches described in Section III implement IMA.

A. Measurement Setup

To prove the feasibility of the new approaches, it was
intended to maximise the resulting key rate – therefore, the
channel was sampled with very high bandwidth to obtain as
much characteristics as possible. Nevertheless, the proposed
schemes will also work with lower sampling rates.

The evaluation uses data delivered by two wireless sensor
nodes measuring the reciprocal channel impulse response
(CIR) using ultra-wideband signals with 500 MHz bandwidth
in the 4 GHz band. Messages are transmitted with impulse
radio ultra-wideband which supports short pulses in the time
domain, with a typical duration of less than 3 ns. The channel
impulse estimation evaluates the perfect autocorrelation se-
quence properties of the preamble sequence of IEEE 802.15.4a
compliant messages. The preamble sequence is a set of ternary
symbols and is carefully designed to exploit the perfect auto-
correlation properties to remove the side-lobes in the periodic
correlation sequence. Peaks in the correlation correspond to the
CIR of the channel [19]. We correlate the received preamble
sequence against the expected preamble sequence and estimate
the CIR using a leading-edge detection algorithm [14]. In our

Fig. 3. Realizing a reduced width m < n for quantized bit vector by
implementing subsampling

hardware, the sample interval is 1 ns, which allows detection
of multipath components with a spatial resolution of 30 cm.
The resolution of the ADC is 12 bit and is implemented with
COTS components.

Alice and Bob transmit messages under line-of-sight con-
ditions in our laboratory and in the adjacent hallway. After
reception of a packet, they estimate their CIR. Alice and
Bob are stationary and five meters apart. The receivers are
placed 1 m above ground to ensure optimal transmission
quality. The line-of-sight path is interrupted when people move
along causing random changes of the CIR. Alice and Bob
transmit messages every 370 ms, generating 6 CIRs per second.
Single measurements consist of 200 data points. We performed
measurements for 6 days, generating more than 20 GB of data.

B. Parameters for Processing

To increase the maximal bit rate, we need to create as
many bits as possible from each measurement. But to create
meaningful statistics we should use fewer bits. If each xt is
quantized into a bit vector bt of width m, than each sequence
will have 2m possible values. P (A,B) will than in turn
generate a matrix with 22m values. Thus, a quantization width
m requires at least 22m measurements so that each possible
event may occur once.

One reasonable value for performance is m = 16, although
this would lead to the need of 216 ∗ 216 = 4, 294, 967, 296
measurements. Our measurement lasting for 6 days yielded
1, 336, 180 data points. So by log2(1336180) = 20.3497 we
have approximately 220 values. Thus, with a quantization
width of 10, we have at least one possible data point for each
event of the joint probability distribution.

Fig. 3 depicts how the quantization width m was realised.
The figure shows an instance of the obtained measurements.
After the removal of the surplus values in the front and
the back (noise and line of sight component), only the part
bearing relevant information is left. Subsequently, m data
points were taken in equidistant intervals as subsamples. The
1-bit quantization then yields a m bit wide bit string as result.

According to Jana et al. [12], this step makes this processing
approach lossy. The lossiness has the disadvantage of reducing
the available information. On the other side, the increased gap
between the sub samples decreases the correlation between
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TABLE II
RESULTING METRICS FOR DIFFERENT 16-BIT QUANTIZATION STRATEGIES WITH AND WITHOUT THE PROPOSED PREPROCESSING

Without CCE preprocessing With CCE preprocessing

Method I(A;B) % of I(A;B)max P (a) = 0 P (b) = 0 I(A;B) % of I(A;B)max P (a) = 0 P (b) = 0

Global 2.0722 bpcu 12.95% 9.25% 9.73%
Block10 2.1992 bpcu 13.74% 9.45% 9.91%
Block5 2.2664 bpcu 14.16% 9.55% 10.00%

TIME IMA 3.0602 bpcu 19.13% 77.80% 76.34% 6.4074 bpcu 40.05% (+20.92) 80.33% 80.32%
TIME RBA 6.5645 bpcu 41.03% 31.97% 22.49% 10.0126 bpcu 62.58% (+21.55) 0.54% 0.20%
TIME LMA 10.8637 bpcu 67.90% 0.02% 0.04% 11.0478 bpcu 69.05% ( +1.15) 0.01% 0.02%

FREQ IMA 1.6955 bpcu 10.60% 91.68% 92.53% 6.8652 bpcu 42.91% (+32.31) 80.36% 80.36%
FREQ RBA 2.5142 bpcu 15.71% 73.93% 77.05% 5.6722 bpcu 35.45% (+19.74) 0.23% 1.38%
FREQ LMA 11.2162 bpcu 70.10% 0.00% 0.00% 11.2671 bpcu 70.42% ( +0.32) 0.00% 0.00%

TABLE III
RESULTING METRICS FOR DIFFERENT 10-BIT QUANTIZATION STRATEGIES WITH AND WITHOUT THE PROPOSED PREPROCESSING

Without CCE preprocessing With CCE preprocessing

Method I(A;B) % of I(A;B)max P (a) = 0 P (b) = 0 I(A;B) % of I(A;B)max P (a) = 0 P (b) = 0

Global 0.3950 bpcu 3.95% 11.13% 7.13%
Block10 0.3907 bpcu 3.91% 5.57% 3.42%
Block5 0.3812 bpcu 3.81% 2.93% 1.37%

TIME IMA 0.0770 bpcu 0.77% 53.61% 54.59% 0.1845 bpcu 1.68% (+0.91%) 76.95% 76.76%
TIME RBA 0.3531 bpcu 3.53% 0.00% 0.00% 0.6395 bpcu 6.39% (+2.86%) 0.00% 0.00%
TIME LMA 1.7916 bpcu 16.29% 0.00% 0.00% 1.8079 bpcu 16.44% (+0.15%) 0.00% 0.00%

FREQ IMA 1.2378 bpcu 11.25% 77.49% 77.83% 0.1362 bpcu 1.24% (-11.1%) 77.39% 77.39%
FREQ RBA 1.2623 bpcu 12.62% 1.76% 5.08% 0.5567 bpcu 5.57% (-7.05%) 0.00% 0.00%
FREQ LMA 1.8983 bpcu 17.26% 0.00% 0.00% 1.9047 bpcu 17.32% (+0.06%) 0.00% 0.00%

data points within a measurement, since adjacent samples are
stronger correlated than samples further apart.

Finally, an important parameter for the quantization process
is the window size of the proposed preprocessing. According
to the preliminary test (Fig. 2), the value w = 6 was used for
the evaluation.

C. Results and Discussion

The results of the evaluation are presented in Tab. II and
III. These tables have the following columns:
• Method: Describes the combination of data representation

and quantization schemes used.
• I(A;B): The mutual information between the legitimate

communications partners achieved by the current scheme.
• % of I(A;B)max: Relates the resulting mutual infor-

mation to the maximal achievable mutual information
I(A;B)max = Hmax = ld(2m) = m, which also
represents the maximal achievable secure key rate. The
main purpose here is to create a comparable metric over
different values of m.

• P (a) = 0/P (b) = 0: The percentage of events in the
event space of sequence A (resp. B), which have the
empirical probability 0.
Some quantization schemes do not yield uniformly dis-
tributed results. In this case, certain quantization results
will occur with high probability, whereas others never
occur, i.e., their relative frequency will be zero (Fig. 4(a)).
A high percentage shows that a lot of possible quantiza-
tion results do have a relative frequency of zero, which

indicates a biased quantization scheme. Hence, this metric
is an indicator regarding the uniform distribution of the
resulting bit strings.

The tables combine the results for the proposed preprocess-
ing as well as for the proposed quantization schemes. The left
part of the table describes the different quantization approaches
without the proposed preprocessing. The right side shows the
same procedures only with the preprocessing added.

For all schemes, the median was used as averaging function.
IMA was additionally implemented for buffering approaches
with global knowledge (Global) and local knowledge using
buffer sizes of 5 (Block5) and 10 (Block10).

a) Mutual Information / Achievable secure key rate:
Tab. II shows results for the quantization width m = 16.
In general the proposed preprocessing step increments the
achieved mutual information in all cases. The minor increment
for the LMA quantization scheme is salient. This stems from
the fact that both schemes internally use the same mechanism
of sliding average functions. But even in this case, adding the
preprocessing increased the achievable mutual information.

Further, the preprocessing makes the online schemes more
effective than those with global or buffered knowledge, which
yield mutual information in the range from 12 − 14%.

The proposed quantization schemes perform significantly
better than IMA as well as the global/local knowledge ap-
proaches. The mutual information increased by up to 59.5
percent points. Additionally, the percentage of results with
probability zero was reduced, e.g., from 77.8% to 0.02%.
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(a) No preprocessing and IMA (b) Preprocessing and IMA (c) Preprocessing and RBA

Fig. 4. Relative frequency of the single events with different processing approaches at 16 bit. A event is the occurrence of one of the 2m possible bit strings.
The red line shows the “optimal” value p = 1/2m, which would be achieved by a perfectly uniform distribution.

Thus, the resulting distribution is significantly closer to the
uniform distribution.

Tab. III reports results for quantization width m = 10. Over-
all, the results are significantly worse. The maximal achieved
percentage for mutual information drops from 70.42% to
17.32%; the improvements through CCE are only minor and
in the frequency domain even negative.

Nevertheless, the proposed quantization schemes still out-
perform the baseline approach and global/local knowledge
schemes. There are increases of up to 15.52 points.

The significant drop of performance between 16 and 10
bit as well as the negative impact of CCE within 10-bit
results (−11, 1%) is assumed to originate from the increased
subsampling intervals. By increasing the distance of single
data points, the characteristic reciprocal attributes are not
captured any more. Since the process builds on these attributes,
the resulting mutual information drops. Subsampling sizes of
m = {4, 6, 8, 10, 12, 14, 16} strengthen this assumption: The
mutual information drops exponentially with decreasing m.

However, this only affects the evaluation and not the pro-
posed solutions per se. The reduction of the quantization width
was only introduced to create sound statistics. In real world
scenarios, the quantization width would not be reduced, since
the focus would shift towards high bit rates. Hence, the channel
characteristics would reliably be captured, which enable the
described positive results of the proposed solutions.

b) Uniform distribution of resulting bit strings:
According to Sec. I and Sec. II the occurrences of the single
bit vectors should be i.i.d. as well as uniformly distributed.
With uniform distribution, each event (occurrence of bit vector
bj) would have the same probability p(bj) =

1
2m . Hence, no

possible bit vector should have a probability of 0. Both Tab. II
and III show instances where the percentage of events with
probability 0 is significantly larger than zero.

On the one hand, there are percentages of 92.5% for
schemes without preprocessing. This shows that these schemes
do not result in uniformly distributed bit vectors. It is worth to
bring to mind, how the input data without any preprocessing is
structured (Fig. 3). After a peak at the start the signal slowly
decreases towards the end of the transmission. Throughout
the decrease, there might occur peaks, e.g., when energy via
reflected paths arrive at the receiver. If this time domain data

is used, this structure is also visible in the distribution of
the bit vectors. In practice, this is visible, e.g., by applying
the IMA approach: During the quantization decision, the first
values (the “peak”) will almost surely be quantized into ones,
because they clearly are in the upper range of the value space.
As shown in Fig. 4(a) the greater values appear clearly more
often than the smaller ones (since their first bits are all “1”).

On the other hand, the majority of the proposed online
schemes with CCE show a percentage of 0% for events
with probability 0. This can be interpreted as indicator that
the resulting bit vector distribution is closer to uniform. An
intermediate step is the result of IMA with CCE as depicted
in Fig. 4(b). Although the preprocessing managed to distribute
the events more evenly, the value range of the frequency
shows that there are gaps within the graph. For m = 16,
the probability of uniformly distributed events would result in
1

216 = 1, 53e-5, but the actual single values lie in the range of
1e-4. Hence, there are still events with probability 0 (Tab. II).

Finally, the distribution in Fig. 4(c) (CCE with RBA) is
close to this “optimal” value. Tab. II confirms, that there are
no events with probability 0.

Altogether, LMA combined with CCE preprocessing yields
the best results with a mutual information of 69.05% of the
quantization width m = 16 for time domain data and 70.42%
for frequency domain data.

Fig. 5. Example autocorrelation function for IMA with m = 16.

c) Independence of quantized bit strings:
The autocorrelation shows a clear peak for a lag of 0 (Fig. 5).
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The next correlation maxima have values of 0.0397, 0.038
and 0.0371 at the lags 1, 2, and 93. These low correlation
coefficients for lags 6= 0 suggest that no linear relation between
the subsequent bit vectors exist. The very low correlation
combined with the single peak at lag 0 strongly indicates
an independent distribution of the underlying sequence. All
schemes yield similar curves (in similar value ranges) for their
autocorrelation function. Hence, it can be assumed that all
schemes fulfil the described i.i.d. assumption.

D. Security considerations

The CRKG process is proven to be secure (Sec. II). The
security proofs are based on the privacy amplification, which
is not influenced by our approaches. Since our new schemes
solely target the randomness sharing and, thereby, the assumed
preconditions, these security proofs still hold. Additionally,
the real world measurements showed that the new approaches
result in bit strings, which are significantly closer to the
assumptions of those proofs than the bit strings delivered by
existing ones (especially regarding the uniform distribution).

VI. CONCLUSION

Within this paper, we thoroughly investigated the quan-
tization step of CRKG. We proposed a new approach for
preprocessing (CCE) and two new approaches for quantiza-
tion (LMA, RBA). These novel schemes target the essential
assumptions of i.i.d bit sequences with high entropy and
reciprocity between the communication partners. In contrast
to existing solutions, they all work in a purely online fash-
ion. To evaluate the approaches, real world measurements of
communication channels were obtained and processed with the
proposed schemes and for comparison with existing quantiza-
tion schemes.

Further, it was investigated how the main parameter for CCE
and LMA, the window size w, can be determined. Based on
the real world measurements, it was concluded that w = 6 is
a sufficient window size in this scenario.

The mutual information was chosen for comparison, since
it depends on the entropy of the single measurements as well
as on the reciprocity between the legitimate communication
partners. In addition, it represents the maximal achievable
secure key rate. The results clearly showed that the CCE
leveraged greater mutual information in almost all scenar-
ios, with differences up to +32.3 percent points. The same
holds for proposed quantization schemes with increases up to
+21.9 percent points for RBA and +59.5 for LMA. Further,
the distribution of the resulting bit vectors produced by the
suggested approaches are closer to uniformity. Finally, our
results revealed, that directly using the data residing in the
time domain does not provide an additional advantage.

Although the results paint a clear picture, several ensuing
questions arise. The influence of the quantization width m
is not finally settled, since it constitutes another trade-off
between efficiency and correlation. The reduction of m also
yielded an unexpectedly strong reduction of the resulting
mutual informations.

In upcoming studies, the influence of the proposed schemes
will be further investigated in two ways: On one side, the
inherent entropy of the mutual information will be examined
further – which in turn influences the quality of the key
material and the resulting key rate. On the other side, the
information leaked towards Eve needs to be examined, since
this a crucial information for the privacy amplification step.
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