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Abstract—Local, blind synchronization of Channel Im-
pulse Responses for key generation algorithms without
leaking details to adversaries is challenging, due to noise
from transmission and measurements. Extracting the chan-
nel characteristics as a common source of randomness using
CIR promises notable improvements in key bit rates for
Physical Layer Security, however, reciprocity requirements
necessitate successful synchronization at both ends.

We propose a one-dimensional Gaussian filter towards
this end, which is simple, more robust, and outperforms
competing approaches in almost all settings. To evaluate
the quality of our approach, we assess the synchronization
accuracy on extensive datasets. Experiments using data
generated synthetically with the standardized IEEE 802.15
UWB channel model indicate a performance improvement
of up to 31%. Performance on par or better than all
alternatives in real measurements underlines its superior
robustness against synchronization errors.

I. INTRODUCTION

Channel Reciprocity-based Key Generation (CRKG)
is a variation of PhySec that aims at efficient shared
secret generation [18], [21]. It has been formalized
and proven information theoretically secure [2] and
consumes significantly less energy than competing key
generation approaches (over 61 time less than ECDH, for
instance [21], [8]). It leverages that volatile properties
of wireless channels between two partners, Alice and
Bob, are reciprocal, but hidden from parties observing
the medium from a third location. This allows Alice and
Bob to derive a shared secret, which is impossible to
guess for an eavesdropper Eve.

A severe drawback of current CRKG approaches is
their low secret key rate of around 2 bits per second.
This is commonly due to their employment of the
received signal strength indicator (RSSI) as a shared
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source of randomness, with a rather low resolution: It
only provides a single value per channel utilization [22].

Quantizing channel state information may help lever-
age much richer and more detailed reciprocal char-
acteristics, while maintaining the security properties.
Some authors hence propose to use Channel Impulse
Responses (CIR) [4], [10], [17].

The measurements at higher resolution require syn-
chronization at both ends: local timing offsets, even
at small scales, inevitably lead to mismatches in the
quantized sequences at the communication partners.
They hence would erroneously observe reduced channel
correlation, leading to mismatching inputs to the key
generation algorithms. It hence is crucial for CIR-based
CRKG to properly synchronize the remote observed
measurements.

This synchronization must not jeopardize the security:
In the context of key exchange, this means to leak as little
information as possible about the key material and its
source. Synchronization hence should be implemented as
a blind protocol, which processes local data exclusively
and does not exchange any information over the public
channel.

Despite its importance for CRKG, the challenge of
synchronization has not yet been addressed. More-
over, our studies show that intuitive synchronization
approaches of adjacent research fields, e.g. [14], [11], are
unsuitable in this case.

To address this challenge, we first analyze the problem
theoretically and define an appropriate methodology for
solution design and evaluation. We then propose a new
approach for blind CIR synchronization in time. In this
new approach, we apply a one-dimensional Gaussian
filter to mitigate deviations in corresponding, remote
measurements. Thereby, a robust anchor for synchroniza-
tion can be determined within the resulting filtered signal
at both parties.
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To evaluate our scheme, we compared it to common
solutions from related fields. We use data from real
world measurements, which we conducted in this context
[19], to assess applicability and performance. As the
measurements represent only specific setups, we also
synthesize data for scenarios ranging from benign to
highly adverse settings, using the IEEE 801.15 UWB
channel model. The results demonstrate the exceptional
performance of our scheme, with advantages of up to
31% over the second best approach.

To summmarize, we make the following contributions
in this paper:
• we introduce a new blind synchronization scheme

for CIR
• we develop a methodology for assessing CIR syn-

chronization
• we thoroughly evaluate the proposed approach

against alternative solutions using data from real
world measurements and simulation.

The remaining paper is structured as follows: In
Sec. II, the system model is described and the methodol-
ogy developed. Section III covers the problem definition
and solution design. In Sec. III-B, our new approach is
proposed. Sec. IV describes our evaluation and Sec. V
concludes and gives an outlook.

II. SYSTEM MODEL AND METHODOLOGY

Although the approaches presented in this paper are
not restricted to a particular use case, we will briefly
describe the system model used. Based on this model we
will develop the methodology used for solution design
and realization in Sec. III.

A. System Model

CRKG is a resource efficient approach of generating
a shared secret between wirelessly connected commu-
nication partners. It is a realization of Physical Layer
key generation based on the source model described by
Maurer and Ahlswede [13], [1], where the shared channel
is treated as common source of randomness. Due to the
unique wave propagation of wireless signals, the channel
properties are specific to the terminals’ positions and
reciprocal at both ends [9]. Additionally, as described
by Jake’s scattering theorem, an eavesdropper residing
more than half of a wavelength away, will observe an
uncorrelated realization due to spatial decorrelation [7].
Thereby, the channel characteristics of the legitimate
partners are hard to predict for such an eavesdropper.

Fig. 1 depicts the general setup of CRKG. The legiti-
mate partners, Alice and Bob, exchange messages over
the shared channel to estimate the respective channel

Alice Bob
hAB

hBA

Eve

hAE
hBE

Fig. 1. General system model for CRKG

characteristics, denoted as X = hAB and Y = hBA
respectively. Eve is a local passive attacker, which over-
hears the communication to gain information about the
prospective shared secret.

To generate reciprocal observations, X and Y are
taken within the channel coherence time. Although the
channel properties per se are highly similar at both
receivers, the realizations contain differences due to
movements and electromagnetic interference within the
coherence time, as well as noisy measurements. To com-
pensate these differences, the further processing employs
algorithms to equalize the observations, which is crucial
to generate a matching secret in the end [2].

Fig. 2(a) depicts typical realizations of estimated chan-
nel characteristics, which were derived from the received
signals. These signals are composed of a known probe
signal x as input convoluted with the channel character-
istics h. Additionally, distortion like noise are modeled
trough Additive Gaussian White Noise n.

yAB(t) = hAB(t, τ) ∗ x(t) + n(t) (1)

Since x(t) is known to both parties, they can estimate
h from this signal. As hXY is mainly determined by
multipath propagation, we follow the assumptions of
the widely applied UWB multipath propagation model
defined by Goldsmith [7].

The estimated channel characteristics are further pro-
cessed as input for the key derivation. This derivation’s
effective key rate is governed by the amount of informa-
tion about this input present at Alice (A) and Bob (B),
which is described by the mutual information I(A;B).
Additionally, the maximal key rate is limited by the
information leakage towards Eve (E) (Eq. (2)), since she
overhears all communication:

Ck,max ≤ min(I(A;B), I(A;B|E)) (2)

To minimize this leakage, as little information as
possible about the input data should be exchanged.

B. Problem Statement

Since CRKG, especially in terms of secret key rate
and secure key bits, is driven by the reciprocity of the
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respective channel estimations, it is crucial to minimize
any influence diminishing this reciprocity. Mismatches
in synchronization will inherently lead to decreased
reciprocity, since even equal reciprocal measurements
will differ, if they are out of sync. In state-of-the-
art approaches to CRKG, this problem has not been
addressed yet.

Our analysis shows that state-of-the-art as well as
common approaches to related problems like maximum
based algorithms, leading edge detection algorithms, and
their modern derivates employed in millimeter range
UWB location applications [14], [11] do not perform
sufficiently in the described scenario.

Therefore, to make CRKG as efficient as possible, an
approach is needed, which can determine a sufficient
synchronization while keeping the information leakage
low. To fulfill the second part, we will only consider
approaches without interaction between the single com-
munication partners, as this keeps the leaked information
at zero (Eq. (2)). Since such approaches only work with
local information, they are also called blind.

In consequence, this means that such blind approaches
have solely local knowledge, i.e. no information about
the reciprocal measurement is available. Hence, there
is no feedback about the performance of the respective
applied algorithm.

C. Methodology

The notation used throughout this section and the
remaining paper is shown in Table I.

TABLE I
NOTATION

Symbol Meaning Alias

Xi, Y i CIR instance measured at time i realization, observation
Vector of samples in time domain

Xj , Yj Data point j with single CIR sample, data point
t Time offset offset, difference
tA Time offset of approach A
tXY Time offset between observations X,Y

To adequately assess the stated problem, we will
develop an appropriate methodology by the following
means: First, an optimal solution needs to be defined,
which will act as baseline for evaluating our newly
proposed approach. Based on this optimal solution, we
define a metric, which shows the performance of the
compared approaches in relation to each other. Finally,
we define another metric to show the impact of the
approaches in the context of overall CRKG processing.

It is worth noting, that the defined metrics employ
a global view on the reciprocal measurements. This

means, the metrics integrate knowledge about differences
between the measurements, which are not available to
the algorithms per se.

1) Theoretical Optimal Solution: The optimal solu-
tion for determining time offsets between two signals is
a function which perfectly identifies the actual offset of 2
given signals. This means, that such a functions uniquely
identifies a time shift, for which the “overlapping” of the
given signals is maximal.

Due to the nature of its calculation, the discrete cross-
correlation becomes maximal, if two signals “overlap”
optimally. For a given offset k, the discrete cross-
correlation of the signals X and Y is calculated as:

(X ? Y )[k] =
∞∑

i=−∞
Xi+kY

∗
i

By computing the cross-correlation for k ∈
[−|X|, |X|] a vector of results for the respective offsets
is generated. The maximum of this vector corresponds
with the optimal time shift, which needs to be applied to
achieved maximal time synchronization of the signals X
and Y . Hence, we treat the offset tCXY as the theoretical,
optimal solution for synchronization:

tCXY = max{k ∈ [−|X|, |X|] : (X ? Y )[k])} (3)

2) Metrics for Synchronization: Proceeding from this
optimal solution, we now define a metric for assessing
different CIR time synchronization approaches. The
different approaches A will locally define a unique
anchor in time at each communication participant. This
anchor is a unique data point within the measurement,
which acts as the origin of the time axis for this
measurement. By using the global view of this analysis,
these local anchors can be related to each other to
calculate a time offset. The closer a given approach’s
time offset is to the optimal shift tCXY , the better is the
respective approaches synchronization performance.

We implement the metrics as follows: The difference
between the optimal time offset tCXY and an approaches
A time offset is shown in Eq. (4). By applying this
difference to all n available CIR observations we obtain
the vector ∆(A). This vector is used in a twofold
manner: First, it is used to calculate the aforementioned
mean and standard deviation of the time differences.
And second, it is used to computed the final metric
∆0(A), which is the fraction of optimal time offset
generated by the current approach (Eq. (6)). An optimal
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(a) Example (b) Maximum (c) Leading Edge Detection

Fig. 2. CIR realization which yield mismatches for different common synchronization approaches.

solution is an approach with ∆ = (0, . . . 0), i.e. ∆0 = 1.

∆i(A) = tAXiY i − tCXiY i (4)
∆(A) = (∆1(A),∆2(A), . . .∆n(A)) (5)

∆0(A) =
|{d ∈ ∆(A) : d = 0}|

|∆(A)|
(6)

3) Metrics for overall CRKG: Finally, we define how
the different approaches are evaluated in the context of
the overall CRKG processing. Since it is crucial for
the key generation to produce the same key at both
partners, the information reconciliation step needs to
be successful. State-of-the-art approaches facilitate error
correction codes for reconciliation. By employing perfect
codes, the success of this step is determined by the
number of bit errors between the quantized observations.
Hence, regarding the overall CRKG processing impact,
the bit error rate (BER) is a suitable metric [21].

In order to assess the BER, the observed real-
valued observations Xi, Y i are quantized into bit-strings
bXi , bY i locally at both communication partners Eq. (7).
As quantization algorithm, the best solution from [19]
is implemented. Afterwards, to identify the differences
between quantized bit-strings, i.e. the resulting error, the
Hamming distance between bX and bY is calculated:

bXi = fquant(X
i) bY i = fquant(Y

i) (7)
ei = |{j ∈ {1, . . . , |bXi |} : bXi

j
6= bY i

j
}| (8)

From Hamming distance and bit-strings length the
BER of a single realization at time i is computed. Finally,
the BER metric is defined as the expected value E over
all single observation BERs as shown in Eq. (10).

BERi =
ei
|bXi |

=
ei
|bY i |

(9)

BER = E[BERi] (10)

The optimal case would be BER = 0, which is
unachievable due to the noisy nature of the physical
measurements.

III. ACHIEVING BLIND SYNCHRONIZATION

A. Requirements

In this section we will define the requirements for an
appropriate solution.

Our analysis of common as well as state-of-the-art
approaches showed, that in the worst case, i.e the worst
analyzed scenario, the best of these approaches only
achieves ∆0(MR) = 0.49. This means, that none of
the traditional and modern approaches achieves opti-
mal synchronization in more the 49% of the observed
CIRs. To visualize the reasons for this lacking perfor-
mance, Fig. 2 shows two examples in which the straight
forward approaches fail and their respective causes:
First, the existence of multiple local maxima within
the first arriving cluster with non-reciprocal amplitude
differences (Fig. 2(b)), where it causes synchronization
errors for maximum based approach. Second, non strictly
monotonous increasing first edges (Fig. 2(c)), which are
especially hard for leading edge detection algorithms.

In relation to the described error causes, an optimal
algorithm would expose 2 major properties:
Uniqueness A single data point within an observation

needs to be identified, which thereupon acts as this
CIRs anchor for synchronization.

Robustness The same unique time anchor needs to be
identified in the reciprocal measurements, irregard-
less of noise and interference.

An explicit non-requirement is the preservation of
edges. Since the error cause in Fig. 2(c) are superfluous
edges in the leading edge, it is not necessary to preserve
such artifacts. Even more, the removal of such interfer-
ence based edges would be favorable. In consequence,
this non-requirement rules out filtering solution, which
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aim for perfect waveform structure preservation, e.g.
wavelet filtering [20].

Finally, we disregard solutions which exchange infor-
mation about the received CIRs. Although they might
exhibit good performance, following the argumentation
in Sec. II-A surplus information exchange about the CIR
should be avoided due to information leakage towards
the attacker.

B. Solution

The two major requirements for the solution will be
achieved by the following means.

Uniqueness can be achieved by selecting the global
maximum of a given signal. As shown in Sec. III, this
approach alone does not perform well, since it is lacking
robustness. Hence, we propose to combine it with an
algorithm which provides this second requirement.

The robustness property can be achieved through two
approaches: The first approach is the application of noise
reduction. This can be realized by employing classical
digital FIR filters like Butterworth or Chebyshev filters
in low- or band-pass mode [15]. Although, they are very
powerful, they need careful fine-tuning regarding the
transmission properties, e.g. baseband and bandwidth.

The second approach, what we are proposing, is
the usage of blurring or smoothing filters originating
from image processing. These have the advantage of
independence of transmission properties. Additionally,
they fulfill the requirements from Sec III — through the
application of such filters with appropriate parameters,
the noisy artifacts of the signal can be eradicated.

Due to their proven strong performance in the fields
of image noise reduction and image edge detection [3],
as well as signal processing for localization [12], [5], we
propose to use a one dimensional Gaussian filter for the
time synchronization.

According to the system model the single CIR are
vectors of values. Hence, we apply a one dimensional
Gaussian filter to this signal, which is defined as:

G1D(x) =
1√
2πσ

exp(−x2/2σ2) (11)

By applying this filter to the single CIRs, a unique
synchronization anchor can be identified by taking the
maximum of the resulting filtered signal.

Fig. 3 shows the CIR of Fig. 2 after applying a Gaus-
sian 1D filtering. It depicts that the filter successfully
removed the aforementioned major error causes.

Fig. 3. Sample CIR from Fig. 2(a) after Gaussian 1D filter.

IV. EVALUATION

We are interested in both the performance and robust-
ness of our approach compared to alternative solutions.
Employing the metrics as introduced in Sec. II, we as-
sess to which extent it independently identifies identical
anchors in corresponding Channel Impulse Response
observations.

We set out to evaluate all alternatives on a large dataset
we acquired in an extensive measurement campaign. It
resembles a characteristic office scenario, considering
two static terminals representing Alice and Bob, and with
static or mobile sources of interference. The measure-
ments are representative only for the given rather specific
scenario. For a broader evaluation of the robustness we
hence subsequently evaluate all approaches on synthetic
data, generated with accepted UWB models from litera-
ture and simulating broad ranges of interference.

We finally evaluate the impact of the improved syn-
chronization for the actual CRKG case, comparing the
achieved bit error rate (BER) after quantization with
algorithms tailored to key generation [19].

A. Compared approaches

While synchronization in CRKG has not been ad-
dressed, there exist alternative solutions for time calibra-
tion. We apply these approaches to the same data sets
for comparison.

A simple maximum detection (MAX) and state of
the art leading-edge detection mechanisms (LED, and
MR)[14], [11] are used as baselines.

In addition, we compare our one-dimensional Gaus-
sian filter to other, more complex digital FIR filters,
for which we choose Butterworth and Chebyshev Type
II filters, both realized as low-pass and band-pass, as
representative candidates. These filters as parameterized
to the acquired real world measurements — additionally,
low and high cut frequencies as well as the filter order
were determined manually to minimze 1−∆0.

To assess the difference between Gaussian and other
smoothing filters, we also compare to moving average
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TABLE II
SOLUTION PERFORMANCE IN DIFFERENT PHYSICAL SCENARIOS

∆0 and (µ, σ) of ∆

Algorithm Scenarios
IA IB IC SA SB SC SD

MAX 0.61 (0.19, 1.20) 0.65 (0.57, 2.74) 0.56 (0.09, 0.65) 0.64 (-0.00, 0.59) 0.66 (0.10, 0.57) 0.59 (0.00, 0.63) 0.69 (0.05, 0.96)

LED 0.69 (0.04, 0.61) 0.67 (-0.54, 9.25) 0.59 (0.12, 10.19) 0.61 (-0.60, 9.52) 0.59 (1.15, 18.1) 0.56 (0.45, 12.11) 0.56 (0.64, 14.06)

MR 0.82 (0.06, 0.41) 0.74 (-0.04, 0.62) 0.82 (0.09, 0.40) 0.83 (0.07, 0.39) 0.77 (0.10, 0.46) 0.85 (0.07, 0.38) 0.81 (0.09, 0.42)

Butterworth Low 0.61 (0.20, 1.21) 0.65 (0.57, 2.74) 0.57 (0.10, 0.65) 0.65 (-0.01, 0.59) 0.66 (0.11, 0.57) 0.60 (0.01, 0.64) 0.70 (0.06, 0.96)

Butterworth Band 0.87 (0.38, 3.41) 0.77 (0.02, 1.95) 0.93 (0.00, 0.25) 0.96 (0.00, 0.18) 0.91 (-0.00, 0.29) 0.92 (0.01, 0.27) 0.92 (0.13, 0.82)

Cheby2 Low 0.83 (0.17, 0.81) 0.76 (0.37, 1.89) 0.93 (0.13, 0.81) 0.95 (0.04, 0.21) 0.87 (0.09, 0.45) 0.91 (0.06, 0.30) 0.79 (0.98, 2.55)

Cheby2 Band 0.88 (0.04, 0.78) 0.77 (0.38, 1.66) 0.93 (0.05, 0.25) 0.96 (0.01, 0.18) 0.91 (0.00, 0.29) 0.91 (0.01, 0.29) 0.95 (0.03, 0.20)

Uniform 0.80 (0.24, 1.33) 0.72 (0.38, 1.87) 0.91 (0.10, 0.47) 0.90 (0.04, 0.30) 0.88 (0.03, 0.33) 0.89 (0.05, 0.31) 0.68 (0.95, 1.98)

Hilbert 0.61 (0.19, 1.20) 0.65 (0.57, 2.74) 0.56 (0.09, 0.65) 0.64 (-0.00, 0.59) 0.66 (0.10, 0.57) 0.59 (0.00, 0.63) 0.69 (0.05, 0.96)

SavGol 0.82 (0.16, 0.87) 0.76 (0.18, 1.20) 0.91 (0.10, 0.47) 0.96 (0.02, 0.18) 0.86 (0.07, 0.35) 0.89 (0.08, 0.32) 0.90 (0.12, 0.93)

Sobel 0.42 (0.27, 2.90) 0.34 (0.10, 5.08) 0.39 (0.16, 2.26) 0.43 (0.14, 2.42) 0.34 (0.78, 6.17) 0.41 (0.01, 2.06) 0.28 (0.01, 6.31)

Wiener 0.64 (0.20, 1.19) 0.66 (0.38, 1.76) 0.57 (0.10, 0.64) 0.66 (0.01, 0.58) 0.72 (0.10, 0.51) 0.62 (0.00, 0.61) 0.76 (0.07, 0.92)

Spline Interpolation 0.77 (0.61, 2.06) 0.67 (0.57, 2.28) 0.85 (0.27, 1.06) 0.65 (0.92, 2.07) 0.78 (0.10, 0.45) 0.80 (0.51, 1.50) 0.76 (0.43, 1.63)

Gaussian 1D 0.90 (0.12, 1.54) 0.78 (0.13, 1.39) 0.94 (0.00, 0.23) 0.96 (0.01, 0.19) 0.91 (0.03, 0.29) 0.92 (0.02, 0.27) 0.93 (0.04, 0.26)

or one dimensional uniform filter, Savitzky-Golay filter,
Sobel filter, Hilbert filter, Wiener filter, and the spline
interpolation. Again, the respective algorithm parameters
are determined a priori, to optimize their performance
with respect to 1−∆0.

B. Real World Measurements

To compare the different approaches in terms of
performance, we used data from previous real world
measurements of realistic communication scenarios [19].
These scenarios were designed to resemble communica-
tion situations in typical office environments.

The first set of scenarios realizes static patterns —
Alice and Bob are stationary within an office environ-
ment, with an additional stationary source of interference
(3rd terminal). Four different positions in the room were
evaluated, where the respective measurements are called
static A,..., static D (SA, SB, SC, SD). Additionally,
three scenarios incorporate movement for additional in-
terference: First, the 3rd terminal moves randomly in the
room; Second, it continuously crosses the line-of-sight
(LOS) of Alice and Bob perpendicularly; Third, it moves
on the LOS between Alice and Bob. The respective cases
are called interference A, B, C (IA, IB, IC).

Within these scenarios, the measurements were con-
ducted in the following manner: Two wireless terminals
are measuring the CIR using UWB signal of 500 MHz
bandwidth in the 4 GHz band. Alice and Bob transmit
messages under LOS conditions in a typical office en-
vironment. After receiving a signal, the respective CIR
is estimated. Both terminals are stationary and placed
five meters apart. The receivers are placed 1 m above

ground to ensure optimal transmission quality. Alice and
Bob transmit messages every 370 ms, generating 6 CIRs
per second. Single measurements consist of 200 data
points. In our hardware, the sample interval is 1 ns,
which allows detection of multipath components with
a spatial resolution of 30 cm. The resolution of the ADC
is 12 bit and is implemented with COTS components.

C. Synthetic Impulse Responses

To test for robustness, we also generate synthetic input
data of a broader range of potential scenarios.

The basis for these synthetic data is the IEEE 802.15
UWB channel model as presented in [6], which is a slight
modification of the Saleh-Valenzuela UWB model [16].
In addition to the channel model itself, [6] also defines
3 parameter sets for typical indoor UWB propagation.
The first parameter set represents a strong LOS scenario,
whereas the second and third models describe typical
NLOS setups. Finally, a fourth parameter set is defined,
which is artificially generated and tries to resemble an
extreme non-line-of-sight (NLOS) case.

Since the model does not support the generation of
correlated measurements, we adapted it to support this
in the following manner: In accordance with the channel
model described in Sec. II, the correlated observations
were realized by adding two different realizations of
independent AWGN to a single observation. This allows
us to generate highly correlated observations Xi and Yi,
to also include edge cases, as described in Sec. III

Since the main task of the approaches is time syn-
chronization, an additional time offset was added to one
of the generated observations. Theoretically, the value of
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TABLE III
SOLUTION PERFORMANCE IN DIFFERENT SYNTHETIC SCENARIOS

∆0 and (µ, σ) of ∆

Algorithm Saleh-Valenzuela Models
Model 1 Model 2 Model 3 Model 4

MAX 0.50 (0.01, 3.47) 0.42 (-0.03, 5.96) 0.36 (0.53, 9.63) 0.36 (0.23,16.37)

LED 0.76 (0.04, 1.26) 0.66 (0.02, 1.80) 0.61 (-0.11,12.12) 0.49 (0.18,13.01)

MR 0.88 (-0.03, 1.37) 0.77 (0.16, 5.56) 0.62 (0.46,12.38) 0.44 (-0.03,17.11)

Butterworht Low 0.47 (-0.05, 4.33) 0.40 (0.01, 6.20) 0.41 (-0.22, 9.27) 0.36 (0.23,16.37)

Butterworth Band 0.56 (0.15, 3.79) 0.46 (-0.08, 5.42) 0.42 (0.47,10.36) 0.37 (0.29,17.73)

Cheby2 Low 0.53 (-0.03, 3.12) 0.45 (0.06, 5.71) 0.40 (0.24, 9.24) 0.38 (0.19,15.57)

Cheby2 Band 0.54 (0.21, 4.36) 0.46 (0.21, 6.16) 0.41 (-0.01,10.87) 0.38 (0.77,16.31)

Uniform 0.68 (-0.08, 2.42) 0.49 (-0.01, 4.84) 0.46 (0.05, 8.26) 0.43 (-0.26,13.59)

Hilbert 0.50 (0.01, 3.47) 0.42 (-0.03, 5.96) 0.36 (0.53, 9.63) 0.36 (0.23,16.37)

SavGol 0.83 (0.02, 2.30) 0.59 (0.90, 2.69) 0.55 (0.32, 7.86) 0.49 (-0.42,15.17)

Sobel 0.33 (0.24, 8.57) 0.27 (-0.34, 9.39) 0.27 (-0.17,16.85) 0.26 (-0.90,22.32)

Wiener 0.51 (-0.02, 3.29) 0.42 (0.05, 5.67) 0.38 (0.27, 9.18) 0.37 (0.14,13.88)

Spline Interpolation 0.50 (0.01, 3.47) 0.42 (-0.03, 5.96) 0.36 (0.53, 9.63) 0.36 (0.23,16.37)

Gaussian 1D 0.86 (0.45, 11.61) 0.83 (-0.01, 15.72) 0.82 (-0.21,11.27) 0.80 (-0.82,16.49)

this offset does not matter, since the algorithms identify
the unique data points within a single realization as
anchors. This means, they do not have a global view
on both realizations and thereby the actual time offset
is irrelevant. It would suffice to show that the approach
identifies the same data point in both observations, to
demonstrate their feasibility. But to keep the results
comparable to the real world, we added similar offsets
between the two observations.

Analyzing the real world data indicated typical offsets
in t ∼ N (8.3, 11.4). We hence used this distribution to
generate artificial offsets in the synthetic data.

D. Results

Table II shows the performance of all solutions, the
results of our Gaussian filter are shown in the last row.
Superior results are highlighted for each scenario. Our
Gaussian filter outperforms all other approaches in all
but one scenarios.

Only in scenario SD, the manually optimized Cheby-
shev band-pass performs slightly better (0.95/0.93). Two
band-pass approaches (Butterworth Band and Chebyshev
Band) fare equally well in the other static scenarios.

In the dynamic scenarios with interference, which
are most relevant to the CRKG problem, our Gaussian
filter performs better than all competing algorithms with
advantages up to 13%, even over the best baseline
approach with global knowledge.

It is also the most robust approach with consistently
high performance across all different measurement
scenarios.

A similar comparison of the performance of all solu-
tions for the synthetically generated CIRs is presented
in Tab. III. Again, the new approach shows highest
robustness, outperforming all others in all but one model.

By recalling the model setup of Model 1 is clear,
why the simple leading edge detection algorithm is
slightly better in this single case: Model 1 represents
a strong LOS channel, as described in [6], which is
characterized by a strong first cluster in the CIR. This is
distinguished by an unusually strong leading edge, which
is also strictly monotonously rising. These two proper-
ties are highly advantageous for leading edge detection
algorithms. Nevertheless, the Gaussian 1D approach still
performs almost on par, even in this case (0.88/0.86).

For the generic NLOS models, our Gaussian filter
again significantly outperforms all other approaches,
with advantages of up to 31% over the second best
approach.

In conclusion, the Gaussian 1D approach delivers best
results in most cases: it comes in second only for two
scenarios that have minor relevance for CRKG, achiev-
ing almost identical performance with the respective
winner. It achieved optimal synchronization for over
90% of the comparisons in measured datasets, and for
over 80% even of the synthetic inputs simulating artifi-
cially bad conditions. This consistent good performance
indicates a good general applicability, since it performs
stable and robust under a broad variety of potential
settings.

Fig. 4 shows the bit error rates when applying our
filter before quantization according to CRKG. While the
BER remains high for all scenarios, the results clearly
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Fig. 4. Improved BER after application of the proposed algorithm.

demonstrate the benefit of applying our approach: Single
improvements reach up to 21% reduction in BER, aver-
aging over all obtained measurements the improvement
exceeds 18%.

This resulting BER over the total measurements ver-
ifies that the slightly higher standard deviation our ap-
proach exhibits has no significant influence on the final
performance.

V. SUMMARY AND CONCLUSION

In this paper we showed the importance of syn-
chronization of channel impulse responses for Channel
Reciprocity-based Key Generation (CRKG). Here, syn-
chronization has to be blind: performed local without
communicating details of measurements to the peer, to
avoid leaking sensitive details to any adversary. This
rules out several intuitive solutions, and optimizations
according to current environments and settings.

We first analyzed the characteristics of the problem,
developed methods and metrics to assess possible so-
lutions, and suggested the application of a Gaussian
1D filter to help uniquely identify anchors in the CIR
observations for blind synchronization.

To evaluate our scheme, we exposed it to real world-
and synthetically generated observations of realistic
to extremely adverse settings. Both resemble different
CRKG scenarios, the latter are based on the statistical
IEEE UWB channel model.

The results from all scenarios underline the superi-
ority of our approach. It achieves synchronization rates
that are better, or at least on par, even with manually
optimized, non-blind solutions throughout all scenar-
ios, which underlines its robustness. The improvement
reaches 31% over the second best approach, which yields
a BER reduction of 18% on average after quantization.

We are currently integrating the Gaussian 1D filters
into an overall CRKG implementation, to evaluate the
impact on the final key generation rate.
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