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Abstract—In Physical Layer Security, knowing the reciprocal
state information of the legitimate terminals’ wireless channel is
considered a shared secret. Although questioned in recent works,
the basic assumption is that an eavesdropper, residing more
than half of a wavelength away from the legitimate terminals, is
unable to even obtain estimates that are correlated to the state
information of the legitimate channel.

In this work, we present a Machine Learning based attack
that does not require knowledge about the environment or
terminal positions, but is solely based on the eavesdropper’s
measurements. It still successfully infers the legitimate channel
state information as represented in impulse responses. We show
the effectiveness of our attack by evaluating it on two sets of real
world ultra wideband channel impulse responses, for which our
attack predictions can achieve higher correlations than even the
measurements at the legitimate channel.

I. INTRODUCTION

Physical Layer Security (PhySec) provides lightweight alter-
natives to classical cryptographic algorithms, with information
theoretical proofs of security. It provides different primitives,
e.g. for key agreement [28], [21], [22], or authentication [13],
[25], [19]. At their core, they all rely on the assumption that
the wireless channel between the legitimate parties Alice and
Bob provides a common source of randomness that is secret
to adversaries.

This advantage between Alice and Bob can take different
forms, most commonly knowledge of the legitimate channel’s
characteristics. Channel Reciprocity dictates that the character-
istics of a wireless channel between two nodes are reciprocal
for the participating two terminals, if measured within some
coherence time. The advantage then is based on the underlying
assumption that an attacker residing more than half of a
wavelength away from any of the legitimate terminals can only
obtain channel estimations that are completely uncorrelated to
those of the legitimate channel. The assumption itself is based
on the so-called channel diversity or spatial decorrelation
founded in Jakes’ statistical multipath channel model [6].

Channel State Information (CSI) can be obtained as Channel
Impulse Responses (CIR, cmp. Fig. 1 and 4 for examples). The
legitimate communication partners mutually send impulses
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on the channel, which allows the other party to estimate
the respective CIRs. Following the assumption above, these
CIRs are highly correlated. Minor differences between those
CIRs remain, due to interferences or non-reciprocal hardware
paths (TX/RX), but subsequently are removed in a process
called Information Reconciliation. The spatial decorrelation
assumption dictates that an eavesdropping adversary observes
entirely uncorrelated CIRs, which cannot be reconciled into
sequences similar to the secret between Alice and Bob.

The basic premise of spatial decorrelation has been ques-
tioned in various works, e.g. [18], [28]. As the multipath
propagation is mainly determined by the physical environment
and the terminal position, the CIR might be precalculated
in so called predictable channel attacks. In such attacks,
a deterministic channel model is used to precompute the
CIR between two legitimate nodes, using knowledge about
the physical environment and terminal positions. Upon some
theoretical work, practical attempts on real-world data have
proved successful [8], [22]. They demonstrated feasibility of
the attack, although with limited utility.

In this work we propose a new class of attacks that does not
model the physical world explicitly, but is based on machine
learning. We train a convolutional neural network (CNN) with
prerecorded data. Observing the impulses of Alice and Bob
at the adversary’s position, this attack allows us to infer the
supposedly secret CIR of their legitimate channel. This attack
is fundamentally much stronger than its predecessors for the
following two reasons: first, much less a priori knowledge
is needed — neither concrete knowledge of the physical
environment nor of the terminal positions are necessary. And
second, it¸ does not require position-specific optimization,
making it more generally applicable.

To evaluate this attack, we apply it in the context of Channel
Reciprocity based Key Generation (CRKG), based on ultra-
wideband (UWB) CIRs, where the reciprocal CIRs are treated
as common randomness for key generation. We use UWB
CIRs as their sensitivity to multipath propagation makes them
very difficult for attackers to predict or infer, compared to other
channel characteristics or transmission technologies. Using
two data sets of real world measurements, we demonstrate that
our attack can predict CIRs with cross correlations as high as
those at the legitimate parties. In the context of CRKG, this
yields up to 83.5% compromised key material.
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Our contributions are as follows:
• we propose a machine learning assisted attack on the

secrecy of CSI in the form of CIRs
• we thoroughly evaluate this attack using two data sets of

real world measurements
• we compare our results against currently best performing

inference attacks
• we show the respective security implications.
The remaining paper is organized as follows: Sec. II de-

scribes necessary preliminaries for this work. Next, Sec. III
gives an overview of current attacks on CRKG. In Sec. IV
the adversary model is described and Sec. V presents the
implementation of the attack. Finally, Sec. VI shows the
performance of this attack and Sec. VII concludes the paper.

II. BACKGROUND AND SYSTEM MODEL

In the following we will describe the core components of
our system model: the channel model in use, the basic channel
estimation protocol and since it is the motivating use case, the
processing during CRKG.

For this work, we assume the usage of ultra-wideband
(UWB) channel impulse respones (CIR) as channel charac-
teristics. Hence, we follow the assumptions of the widely
applied UWB multipath propagation model as defined in [6].
This means the CIR at time t, h(t), is expressed as the sum
of multipath components, which are caused by reflections,
diffractions and scattering:

h(t) =
N∑
n=0

αne
−jφnδ(t− tn) (1)

Here, αn and φn are the amplitude and phase of the respec-
tive n-th multipath component, and δ is the Dirac function.
The properties α and φ are the channel characteristics used in
the PhySec primitives. It is worth noting, that (1) assumes a
time-invariant channel. This assumption is justified since the
CIR measurements are taken within the coherence time of the
channel, in which the channel is considered to be invariant.

The participating terminals can estimate their respective CIR
by measuring the received signal y(t) of a known transmitted
input signal x(t), since y(t) is the convolution of the input
signal with the channel plus Additive Gaussian White Noise
n:

y(t) = h(t) ∗ x(t) + n(t) (2)

Given the time-discrete nature of sampling, the single values
within a CIR follow a defined structure as described in [17].
Accordingly, both the amplitudes of the multipath components
themselves and the values within a component follow an
exponential decrease. An abstract representation thereof is
depicted in Fig. 1. Due to additional noise and interferences,
real world measurements do not exhibit quite such a clear
structure (cmp. Fig. 4a and 4c).

Using this channel model, we can describe the core system
model for the presented attack. This system model is based on
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Fig. 1: Abstract structure of a CIR. The blue line represents
the CIR, the orange the decay of the multipath components.

general CRKG processing, as described in [20]. It is worth not-
ing, that although CRKG is the motivating use case here, the
presented attack is not limited to this particular application —
in fact, every PhySec primitive that relies on CIRs is affected,
as for instance all corresponding authentication approaches,
among others. The system model and core protocol for CRKG
are depicted in Fig. 2.

The basic workflow of CRKG is as follows: Alice and
Bob exchange messages over the reciprocal channel to obtain
the respective estimations of the channel characteristics hAB
and hBA. Channel reciprocity causes their observations hAB
and hBA to be highly correlated. Noise and interferences
cause some distortion, and they hence are not perfectly equal.
Therefore, subsequent to quantizing these estimates, Alice
and Bob perform Information Reconciliation, which eliminates
remaining differences between the bit vectors at Alice and
Bob. They finally perform Privacy Amplification, which takes
potential leakage to Eve into account, extracts the remaining
secret randomness and yields the final key candidates.

The most important assumption of CIR-based PhySec is the
claim that an adversary Eve, residing more than half of a wave-
length away from the legitimate terminals (around 3cm, in our
UWB experiments), cannot estimate characteristics that are
sufficiently correlated to those of the legitimate channel [15]. It

Alice Bob

Eve

hAB

hBA

hAE hBE

Fig. 2: Generic system model for CRKG: Alice and Bob
measure the reciprocal channel and thereby obtain their es-
timates hAB and hBA. Eve overhears this communication and
estimates her own channels hAE and hBE . Time-dependency
hXY (t) of the estimates is included in our system model, but
the notion is omitted for brevity.
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is derived from spatial decorrelation, as conjectured by Jakes
scattering theorem [6].

Since we will present an attack that tries to infer CIRs, as
described in Equation (1), we need a metric for similarity
of CIRs. Commonly, CIRs are compared using the cross
correlation of the two signals [16]. This is also the common
metric in related work [8], [22], and we hence will employ
the normalized cross correlation (CC), as defined in [16]:

CC(h, g) = max
k

rgh(k)√
EgEh

(3)

= max
k

∑∞
i=−∞ g[i]h[i− k]√∑ng−1

i=0 g[i]2
∑nh−1
i=0 h[i]2

(4)

The respective CIRs in comparison are denoted by h and
g: Given the metric, the attacker hence tries to infer a CIR
g that is as close to hAB as possible ( i.e. CC(g, hAB)
is close to CC(hAB , hBA) or respectively CC(g, hAB) −
CC(hAB , hBA) ≈ 0). In other words, the attacker aims to
minimize the remaining secret randomness between Alice and
Bob, or preferably eliminate it completely, to break the secrecy
of the key agreement.

The received signal strength indicator (RSSI) is another
channel measurement, the use of which, besides CIR, has
frequently been suggested. This is mainly due to its general
availability, also in commercial off-the-shelf (COTS) radio
interfaces. RSSI is a single value that indicates the received
power level. Note, that knowledge of the CIR, as our adversary
aims to infer, allows to directly derive the RSSI value as
well [26]:

RSSI = 10 log2(||h||2) (5)

Considering this calculation it becomes evident that RSSI
contains much less information about the channel than CIR.

Finally, we would like to point out that different PhySec
primitives have different underlying requirements for the re-
spective input data: CRKG, for example, requires dynamic,
changing channel characteristics, since the entropy of these
dynamic changes is used for key generation. PhySec au-
thentication, on the other hand, requires comparatively static
channel characteristics to verify the identify of the legitimate
communication partner, which makes inference even easier.

III. RELATED WORK

In the following we will describe current attacks on CRKG
systems. As with the general CKRG approach, the majority of
related work here is targeted at RSSI based systems.

Several active attacks against RSSI based CRKG schemes
have been proposed [4], [27], [10]. At their core they all either
employ jamming or signal injection, intending to deteriorate
or alter the transmission in such a way, that only predictable
channel characteristics are used by Alice and Bob. By forcing
the usage of predictable keying material, the respective key
derivation is compromised. Due to their active nature, such
attacks can easily be detected and mitigated.

In the realm of passive attacks, many papers assume that
the basic premise of spatial decorrelation does not hold
in practice [18], [28], [29], [30]. For RSSI values it was
shown, that distances greater than λ/2 do not yield completely
uncorrelated channel measurements [29]. Further, a passive
eavesdropper can derive up to 74.11% key bits correctly, when
RSSI based schemes are used [5].

Recent work claims that CIR based PhySec is immune
to predictable channel attacks and to the attacks presented
above [14]. However, in spite of such claims, there have
been practical attempts using real world measurements, which
directly attack CIRs as channel characteristics in a passive
setting.

Döttling et al. propose the so called room reconstruction
attack [2] . The core idea is the following: within Eves
estimated CIR are the respective multipath components, which
mainly originate from reflections. The position of the these
components within the CIR is the respective time delay of
a multipath component. Based on this time delay and the
propagation speed of the wireless wave, i.e. the speed of light,
the causing reflector has to be in fixed distance. This fixed
distance defines an ellipsis on which the causing reflector has
to lie. As Eve overhears two CIRs, one from Alice, one from
Bob, two such ellipses can be constructed. The intersection
has to be the original reflector in the physical environment.
The legitimate CIR may subsequently be calculated from the
environment reconstructed in this way. The authors realized
their idea in theory and with simulation data, but without any
evaluation.

Hamida et al. and Walther et al. extend this approach,
bridging the gap to practical realization [8], [22]. They aim
to reconstruct the legitimate CIR between Alice and Bob,
given perfect knowledge of their positions and surrounding
environment. While the former use an unspecified ray-tracing
tool, the latter calculate the CIRs using the deterministic UWB
channel model of Kunisch and Pamp [11]. The parameters of
the channel model were optimized for the given positions and
environments, both specifically for each individual position as
well as generic for all possible positions. While the generic
attack cannot be considered a success, attacks based on
individual optimization yielded somewhat promising results.

IV. ATTACK IDEA AND ADVERSARY MODEL

Next, we will introduce the basic idea behind our attack and
the resulting attacker model.

The attack idea is rooted in the following three obser-
vations regarding CIR based PhySec and CRKG: First, the
CIRs recorded by the respective participants have an inherent
structure, in the sense that the individual features follow a
well-defined pattern [6], [17], as visualized in Fig 1. These
are exactly the features used as key material in CRKG, for
example. As [22] has demonstrated, CIR features can be
estimated with deterministical calculation to a certain extent,
given sufficient information. Second, the core assumption, that
an eavesdropper who resides more than λ/2 away from the
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legitimate partners measures CIRs that lead to completely un-
correlated channels estimates, might not hold in practice. This
assumption has already been questioned in recent work [18],
[28], and in theory it is possible to reconstruct parts of the
room geometry solely from overheard features [2]. Hence,
we postulate that it may be possible to reconstruct parts
of the key material only from features overheard in larger
distances. And finally, as the CRKG processing itself corrects
certain differences between input data during Information
Reconciliation, an attack does not need to predict the input
data perfectly. For a successful attack it is sufficient to predict
input values which do not have greater differences than the
respective hAB , hBA pair. In this work, we hence want to
investigate to which extent these three facts combined facilitate
a practical inference attack.

Our attack aims to predict the CIR accurate enough to be
within a distance that subsequently is corrected successfully
by Information Reconciliation. To achieve this, we propose a
machine learning model, which implicitly performs geometry
reconstruction as well as the subsequent prediction of legiti-
mate channel characteristics. It allows an attacker to predict the
input values for the CRKG processing, which in turn enables
her to derive the supposedly secret key of Alice and Bob.

The adversary model is defined by the attacker’s behaviour
within the system model. To realize the described attack
idea, the adversary acts in two steps: first, in a preparatory
step, the attacker collects CIR samples representing all three
channels, i.e. possible channels between Alice/Bob, Alice/Eve,
and Bob/Eve. These samples are used to train our machine
learning model. Second, during the attack itself, the adversary
is completely passive and is only listening to the legitimate
communication between Alice and Bob. The attacker locally
processes the CIRs she overhears with the trained model and
infers the CIR between Alice and Bob. Since all messages of
the subsequent processing are sent in clear text, the attacker
can subsequently use the inferred CIR to derive the same key
as Alice and Bob. As the attack is carried out with COTS
hardware, no special capabilities are needed for the adversary.

This attacker model is similar to those in [22], [2] and
[8]. Nevertheless, we weaken the attacker model, and thereby
strengthen the attack, as we do not require Eve to know the
room geometry and positions of the legitimate terminals within
the room. Following the notation presented in [24] this changes
the adversary model from model-based to model-free, as we
no longer need a predefined physical model of room and
positions, but instead learn them implicitly, based on prior
observations of the adversary. Further, in difference to the state
of the art, our attack does not require any optimization with
respect to the terminal positions. Finally, to the best of our
knowledge and with respect to PhySec, it represents the first
attack leveraging machine learning.

V. REALIZATION

In the following we describe how we implemented the
presented attack. First, the acquired data and the respective

Input

1D Conv × 16

1D Conv × 32

1D Conv × 64

MaxPooling1D

Flatten

Dense × 256

Dense × 64

Fig. 3: The core architecture of the Convolutional Neural
Network used in the inference attack.

preprocessing is presented. Second, we will describe the core
architecture of our machine learning approach. And finally, we
show how these parts are combined to successfully mount the
corresponding attack.

Data: We used real world UWB CIR measurements which
were obtained in two separate measurement campaigns.

The first data set, dubbed scenarios, was recorded as de-
scribed in [20]. It consists of seven different scenarios in a
typical indoor office environment, ranging from entirely static
to highly dynamic scenarios. The measurements itself were
conducted at 4GHz, with a bandwidth of 500MHz and a
sampling rate of 1ns.

We then conducted a second measurement campaign, result-
ing in a data set, which we refer to as long-term. Here, the
three terminals (cmp. Fig. 2) were set up in a busy hallway,
with Alice and Bob right across and Eve about 4m down
the hall. Interferences were generated by people traversing
the Line-of-Sight throughout the whole measurement. The
transmission parameters are the same as for the scenarios
measurement. This setup ran for about 10 hours and collected
175005 data points.

To prepare the data for the processing, the following
preliminary steps were conducted for all measurements: we
synchronized the CIR pairs by using the maximum of the
cross correlation, in accordance to [21]. This is valid, because
the attacker has all samples locally at hand, so no blind
synchronization needs to be applied.

Subsequently, we purge the parts containing only noise to
extract those that bear information of the CIR. To achieve
this, we defined a starting point within the CIR measurement
through leading edge detection. From this starting point, we
took the next 64 values. Note, that values further behind the
leading edge did not show significant reciprocity any more.
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(c) Target values and CNN generated
prediction

Fig. 4: Exemplary CIR realizations at different nodes as well as the derived target values and the values predicted by the
attacking CNN.

In preparation of the training process, the CIRs were scaled
by the standard deviation of the measurements.

Fig. 4a depicts the acquired measurements hAB and hBA
after this processing. In Fig. 4b the corresponding measure-
ments at Eve, hAE and hBE , are shown. The measurements
of the legitimate, reciprocal channel hAB and hBA are called
reciprocal, whereas Eves CIRs (overheard measurements and
predictions) are called non-reciprocal, since they are not part
of the reciprocal channel.

Finally, we defined the mean of hAB and hBA as target
for the model training process. This decision is based in the
CRKG processing itself: one of the main steps is Information
Reconciliation, which removes slight differences between hAB
and hBA, as those are not perfectly equal either. Hence, for an
attack to succeed, it suffices to solely have the same amount
or fewer differences as Alice and Bob.

Architecture: The main aim is to reconstruct the channel
characteristics of the legitimate channel from the features
observed at Eve. Literature indicates that Convolutional Neural
Networks (CNN) excel at this task [12], [31]. We hence chose
them when designing our core architecture. Since our input
data will be one dimensional, we will use 1D convolutional
layers (Conv).

The architecture of the final network used in the attack is
depicted in Fig. 3. It is a straight forward CNN realization
consisting of three 1DConv layers with 16, 32, 64 feature maps
respectively, followed by a 1D MaxPooling layer. Afterwards
a Flatten layer reshapes the data for the subsequent processing
done by two fully connected layers (Dense). The intermediate
Dense layer has size 256 and the final layer has the size
of the targeted output, i.e. 64 elements. After each 1DConv
and before each Dense layer, a Dropout layer with rate 0.5
is applied, to avoid overfitting and to provide generalized
learning results. All 1DConv and Dense Layers have Rectified
Linear Activation functions.

Although this architecture might seem simple, it is sufficient
to extract relevant features from the CIRs, as shown in [23].
Note, that we also tested more complex architectures like
VGG, DenseNet or InceptionNet, but despite their significantly

higher complexity, none of those achieved better results than
the architecture presented here.

Training: To train the network, we split the acquired data
by 0.7 and used the 70 % for training and the remaining
30 % for evaluation. In the case of the scenarios dataset,
this division was made separately for each scenario. Since
we intend to fit real valued output data, we used the Mean
Squared Error as loss function and Mean Absolute Error as
accuracy metric. Dozat suggested to train the network using
the ADAM optimizer with Nesterov momentum for such tasks,
as it can achieve the best performance [3].

Fig. 4c shows an example of the prediction performances
of the trained network.

VI. EVALUATION AND DISCUSSION

To evaluate our attack, we will compare the results with
those of similar attacks, i.e. [8], [22]. As both previous works
evaluate their results using the maximum of the normalized
cross correlation, we will also employ this metric, as intro-
duced in Sec. II, to ease comparison.

Prediction accuracy: To assess the accuracy of the CNNs
prediction, we first show the measurement metrics as his-
tograms. In Fig. 5a the green and blue histogram shows the
cross correlation of the reciprocal and non-reciprocal measure-
ments, respectively. As the scenario data is very diverse, we
expect a spread out histogram. In contrast, the long-term data
is more stable, hence, the histograms are more consolidated.

The upper plot in Fig. 5a shows the results for the scenario
measurements: for the reciprocal measurements the mean
cross correlation is 0.980, for the non-reciprocal ones 0.807.
The fact that the non-reciprocal distribution appears to be
multi-modal apparently results from the different measurement
scenarios: some scenarios include much interference, which
translates to significantly worse results for the non-reciprocal
measurements. The lower plot depicts the results for the long-
term data. The cross correlations are more stable and higher
— the non-reciprocal mean is at 0.871, the reciprocal one at
0.990, as expected.
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Fig. 5: Achieved normalized cross correlation between legitimate terminals and predictions for current attack and baseline.

In the plots of Fig. 5a, the red histogram represents the
cross correlation between the legitimate CIRs and the ones
predicted by the CNN trained for this attack. Due to the
training towards the mean of hAB and hBA, we expect to
see a distinctively higher cross correlation than for the non-
reciprocal measurements. In the scenario setting, the mean of
attack CIRs lies at 0.902. The CIRs predicted by the attack are
closer to the reciprocal than to the non-reciprocal ones, which
means that the inferred CIRs substantially match the legitimate
ones. Again, the histogram appears to be multi-modal due
to the differing performance in the varying scenarios. For
the long-term measurements, the average attacker correlation
is 0.997 — so in fact higher than the average correlation
of the legitimate CIRs, which is at 0.990. This is possible,
as the CNN learns to predict the mean between hAB and
hBA. Hence, a very precise prediction is closer to hAB than
hBA. Consequently, this result means that the attacker in this
setting can predict the CIRs on average so well that he has
better knowledge of the reciprocal channel than the legitimate
participants — and thus also of the implicit shared secret of
them.

Overall, these results clearly demonstrated the high predic-
tion accuracy of the trained attack CNN. This accuracy allows
the attacker to significantly expand his information about the
legitimate channel up to concrete knowledge about the channel
characteristics.

Comparison to baseline attacks: In Fig. 5b we compare
the prediction performance of our attack to those of the two
baseline attacks in [8] and [22].

Compared to [8], our presented attack provides substantially
better results for the attacker. Since only the maximum can
be reliably extracted from their paper, we compare here our
average value with their maximum. The attack presented here
provides better cross correlation with 0.902 and 0.997 than the
maximum of≈ 0.7 in [8], despite this unfavorable comparison.

The attacks from [22] need to be differentiated regarding
their optimization approach: Only results originating from the
“general” optimization are comparable to our results, as only
those are generalized to be applicable to all measurements in
this room. With this optimization the previous work achieves
average cross correlations of 0.825 and 0.837. Again, the
attack presented here outperforms the previous work with a
cross correlation of 0.902 and 0.997.

The individual optimizations in [22] are each specifically
adapted to a concrete terminal position and room geometry.
Hence, higher correlations are achieved here, with 0.920 and
0.927. However, since this specific optimization cannot be
applied to other measurements but to the concrete one, these
results are not comparable to the results of our generically
applicable attack.

Nevertheless, in the context of the presented attack, a fair
analogy to ”Individual Optimization” would be an evaluation
regarding the training data, since these are also specialized
and not generically applicable. — here our attack would reach
correlations of 0.975 and 0.999, thus again outperforming
the baseline attack. However, as we are only interested in
generically applicable attacks and as evaluating the training
data is no meaningful analysis, these results are not shown in
Fig. 5. Furthermore, our attack, even in the generic version,
achieves significantly better cross correlation with 0.997 for
the long-term measurements.

Security of keying material: The processing subsequent
to the channel measurement is currently not standardized and
many different solutions for the key generation exist. Hence, a
definite analysis of the attack’s impact on the key exchange is
difficult. Nevertheless, to still show the possible implications
of this attack, we implement a threshold based quantization
scheme, as used in, e.g., [1], [9], [15], and analyze the resulting
Hamming distances between Alice/Eve and Bob/Eve. Such
threshold based quantization approaches were also used as
baseline in previous quantization related work, e.g. [20], [7].
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Fig. 6: Average Hamming Distances for overheard CIRs (blue bars), legitimate CIRs (green bar) and the values predicted by
the attack (red bars).

Note, that Alice and Bob would aim to achieve very low
Hamming distance between each other, and as high Hamming
distances as possible to the sequence Eve infers.

As we trained our CNN to predict the mean of hAB and
hBA, the resulting quantized bit vector of the predicted CIRs
are expected to have significantly lower Hamming distances
than quantized hAB/hAE or hAB/hBE .

Fig. 6a presents the Hamming distances for the observations
obtained by Eve, Alice and Bob in the scenario data set
as well as for the predictions generated by the presented
attack. The reference is the green bar in the middle showing
the average Hamming distance of 0.069 for the quantized
CIRs of Alice and Bob. The two blue bars show the average
Hamming distance between the overheard CIR measurements
at Eve and Alices/Bobs CIR after quantization, with 0.263 and
0.261, respectively. On the right, the red bars show the Ham-
ming distance between the attack predictions and Alices/Bobs
quantized CIRs, achieving 0.105 and 0.110, respectively. It is
visible, that the attack generates values well within the stan-
dard deviation of the legitimate channel, i.e. binary sequences
which should be successfully corrected during Information
Reconciliation. Further, the attack yielded a perfect match, i.e.
a Hamming distance of 0, in 1.2% of all cases and Hamming
distances below those of Alice and Bob in 39.1% of all cases.

In combination, this means that an adversary carrying out
this attack can derive the same key bits as the legitimate
communication partners in at least 39.1% of all cases.

Fig. 6b depicts the same values as measured for the long-
term data set. Since these measurements, unlike the previous
ones, do not contain highly dynamic interference, all distances
are considerably lower. The green Alice/Bob reference is
0.032; the respective results for Alice/Eve and Bob/Eve are
0.125 and 0.101. In this setting, the CNN attack achieved
significantly better results: with average Hamming distances of
0.021 and 0.026, the predictions achieved even better results,
than the legitimate Alice/Bob CIR pairs. This is possible,
because we trained the network to predict the mean of Alice

and Bobs measurements. Hence, if the attack prediction is
accurate enough, the resulting Hamming distance at Eve can
even be lower than those of Alice and Bob. Further, the attack
yields Hamming distances of 0 in 33.5% of all cases and
distances below the legitimate on in 83.5% of all cases.

Again, this means that the attack can derive the correct key
bits in 83.5% of all cases.

In conclusion, these results show that a significant propor-
tion of the key material can be successfully inferred, using the
proposed attack. Within both datasets, the CIRs predicted by
the attack show high correlation to the legitimate CIRs and
in many cases even exceed the correlation of the reciprocal
measurements, resulting in a significant proportion of the
keying material being compromised.

Using RSSI instead of CIR-based schemes cannot improve
security, as indicated above. To the contrary, since RSSI can
directly be derived from CIR, RSSI-based systems will be
much more vulnerable to our attack.

Considering that other PhySec primitives have different
input data requirements, the results of the long-term mea-
surement reveal a further problem: since these measurements
were recorded with comparatively little dynamic range in the
channel, they would also be suitable for PhySec primitives
requiring more stable channel characteristics, such as authen-
tication. The obtained results of the presented attack imply that
the underlying assumption of uncorrelated observations is not
unconditionally acceptable. Hence, similar PhySec primitives
relying on the same core assumption may be affected in the
same way as the presented CRKG.

VII. SUMMARY AND OUTLOOK

In this paper we have investigated how one of the most
fundamental assumptions of Physical Layer Security — that
adversaries residing further than half a wavelength away
from the legitimate parties can only overhear uncorrelated
measurements — can successfully be attacked.
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To achieve this, we use the fact that core properties of the
environment can be derived from monitored channel impulse
responses. With the help of these, it is in turn possible to infer
the channel properties between the legitimate terminals. For
that purpose, we propose an attack based on Convolutional
Neural Networks, which learns to directly infer seemingly
secret CIRs from CIRs that are observed at a third, remote
location.

We thoroughly evaluated this attack using two sets of real
world measurements — one consisting of different typical
indoor scenarios, and another indoor long-term measurement.
Our attack infers the legitimate CIRs with very high accuracy
in both sets: in the first more dynamic scenario, the inferred
CIRs reach average cross correlations of 0.902 compared to
the correlation of the legitimate ones, 0.980. In a data set of
long-term measurements, the predictions even outperformed
the CIR estimation between the legitimate parties, with corre-
lations of 0.997 vs. 0.990, due to specific training.

We also analysed the Hamming distances between the
quantized legitimate and inferred CIRs, to understand the
implications for Channel Reciprocity-Based Key Generation
(CRKG). The results clearly show that a significant proportion
of the potential key material must be considered predictable,
and hence insecure. More precisely, 39.1% of the key material
is compromised in our first measurements, and 83.5% in the
case of long-term measurements.

Our investigations demonstrate that the presented attack
poses a significant threat to PhySec primitives. This apparent
risk does not only concern the presented use case of CRKG,
but also other PhySec methods based on CSI in the form of
CIRs, such as authentication.

To improve the attack results, especially for non-static
scenarios, we are currently in the process of recording fur-
ther CIR measurements including the location information
within the room. We will use this additional input in the
training process of the CNN and expect to achieve higher
prediction accuracy for dynamic settings. Furthermore, we will
investigate how such attacks can be defended or mitigated in
the PhySec context, e.g. by additional preprocessing or by
applying machine learning on the defender side, as well.
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