Demo: Towards Rapid Prototyping Network-Slicing
Solutions 1n Software-Defined Networks

Fritz Windisch*, Kamyar Abedi*, Giang T. Nguyen'¥, Thorsten Strufe*?,
*Chair of Privacy and Security, Kastel, KIT, E-mail: {firstname.lastname } @Xkit.edu,
THaptic Communication Systems, TU Dresden, E-mail: {firstname.lastname } @tu-dresden.de
iCentre for Tactile Internet with Human-in-the-Loop (CeTTI)

Abstract—As part of the most recent mobile broadband stan-
dards, 5G and 6G, network slicing solutions will shape the future
of networks. By employing network slicing, network operators
can protect participants against different attacks over the net-
work by isolating devices and providing resource guarantees.
Currently, to evaluate new network-slicing solutions, network
researchers or engineers have to either evaluate the solution
in a virtual environment that can not accurately scale to the
performance of hardware platforms or invest significant portions
of time in network configuration on hardware platforms. To
quickly prototype network slicing solutions and other solutions
depending on software-defined networking (SDN) features, we
introduce a hardware abstraction layer featuring a vendor-
independent API to manage hardware platforms and a new
testbed solution featuring topologies similar to common network
evaluation platforms like mininet.

In this demo, we showcase a network-slicing solution lever-
aging SDN. The audience can visually observe the performance
of the communication channel before and after denial-of-service
attacks and with and without the secure network slicing.

Index Terms—Network slicing, Prototypes, Network function
virtualization, Software-defined networking

I. INTRODUCTION

With the advent of 5G and 6G mobile communication
systems, the techniques of network slicing and software-
defined networking gained additional traction in the
networking community. Network slicing will provide a more
secure and robust communication infrastructure for industrial
applications and end users. This is achieved by isolating
participants from one slice against other traffic and providing
bandwidth and availability guarantees within the slice [l1].
As modern communication systems are also employed within
critical infrastructure, providing a fail-safe state-of-the-art
communication infrastructure is paramount. The second
cornerstone technology is software-defined networking
(SDN). Using SDN, one can program the data plane (the
plane forwarding the actual network traffic) from a control
plane component using APIs such as OpenFlow or the P4
runtime. The strengths of SDN lie in greater flexibility of
network topologies, cost reduction by vendor independence,
and the knowledge of a global state so that traffic can be
routed more efficiently [2].

In order to develop and evaluate the network-slicing so-
Iutions of the future, making our networks a safer place, a
researcher or engineer currently has two possible options. The

first option is to use a network emulation tool like mininet
[3]], distrinet [4]], or others. The advantage of these frameworks
is that prototyping network topologies becomes significantly
easier. In the context of SDN, they usually provide utilities
to create control and data plane components and feature-rich
utilities to create local test setups. However, the problem with
these tools regarding network slicing is that they do not support
incorporating real-world hardware into their infrastructure.
Due to this, evaluation of scenarios where denial-of-service
(DoS) is an expected adversary, like in network slicing, can
only be performed with limited accuracy due to the limited
volume of traffic that can be transmitted in simulated environ-
ments. If a local simulated solution is ported to a real-world
solution, it can happen that this solution subsequently fails on
a larger-scale DoS, thus wasting expensive development time.

To prevent this from happening, one could develop and
evaluate directly on hardware from the beginning. The dis-
advantage is that a lot of development time will be spent
creating an individual solution that needs to follow a valid
approach from the beginning. Development time is thus lost on
solutions that would already have proven ineffective in local
environments. However, creating a network testbed solution
supporting different hardware from multiple vendors takes
time and effort. Furthermore it has a potential risk to result in a
convoluted code base with many corner cases being handled in
different situations. Our hybrid testbed combines hardware and
(virtualized) software support to speed up development. The
testbed provides a hardware abstraction layer and a testbed
solution to test new network slicing (and other) solutions
directly on vendor-independent hardware.

This demo will showcase our solutions and provide an
interactive example to demonstrate a network-slicing solution
using our abstraction layer and vendor-independent hardware
testbed solution. We will first present our network slicing
prototyping solution in section [II} before describing our live
demonstration in section

II. TECHNOLOGY

This section will describe our network-slicing prototyping
solution and its components. To untangle the code base, we
thus chose to introduce two abstraction layers: i) the hardware
abstraction layer providing unified functionality for one vendor
at a time and a network testbed implementation providing the
API for the users. The network testbed layer uses the hardware

abstraction layer to deploy the desired functionalities. We will
describe both parts, beginning with the hardware abstraction
layer.

a) Network hardware abstraction layer: We are im-
plementing the hardware abstraction layer to interact with
network hardware, like servers and switches from multiple
vendors. For each network hardware vendor or series sup-
ported by our layer, we provide a program called a “worker”
that interacts with the specific network hardware via different
protocols. For example, we use the P4 runtime to interact
with SONiC and Stratum. On SONiC, we also use gNMI.
For Aruba switches, Cisco switches, and switches running on
PicOS, we are currently using a combination of SSH, Netconf,
and OpenFlow. To obtain information about switches, we use
SNMP. This architecture is also visualized in figure [T

Service Service Service

§ § &

Worker (Hardware abstraction layer)

11288

Hardware component (Switch/Server)

OpenFlow

Fig. 1. Our hardware abstraction layer used to deploy configurations to
hardware components like switches or servers. Services (for example our
testbed or any other party wanting to configure hardware in a vendor
independent fashion) can contact a worker and request or update information,
which is then realized by the worker through the use of multiple different
protocols. These protocols include OpenFlow, P4 runtime, Netconf, gNMI,
SNMP and SSH. The services generally run on another machine. The worker
can either be executed on another machine as well, or if the hardware supports
it on the managed piece of hardware itself.

The hardware abstraction layer provides a gRPC API for
invocations from different services. The API will include
management of the general machine configuration, the ma-
chine ports, quality-of-service (QoS) configuration, and flow
configuration. The general machine configuration will contain
names, features, and software version identifiers. The machine
port configuration will control the state of specific ports on
a machine, including IP address information, VLAN settings,
bond settings, and more. The QoS configuration is responsible
for creating and managing QoS classes. The flow configuration
will realize routing schemes and traffic operations, such as
MPLS label management.

The flow configuration must be included in the API, as we
currently have a diverse setup of OpenFlow and P4 switches,
and full cross-compatibility between the two remains a matter
of future work. Even though there is technically openflow.p4,
a P4 program able to process OpenFlow instructions written
in the P4 language, it is currently unmaintained and not able

to handle quality-of-service and other OpenFlow features[ﬂ

Currently, support is planned for SONiCﬂ Aruba Oﬂ
PicOﬂ OpenVSwitclﬂ and plain Linux-based servers, as
those are currently present in our laboratory environment and
already provide great flexibility across vendors. However, we
plan to extend our setup in the future to support more options
like Cisco IOS and Stratum.

b) Hardware independent network testbed: Our
hardware-independent network testbed uses the abstraction
layer above to interact with different kinds of hardware. This
way, complex topologies can be deployed across vendors.
We used a novel approach for our testbed solution called an
“intermediate representation” [35] to create our ecosystem.
This term is frequently used in compilers to transform code
from source to machine code step by step via multiple
intermediate representation languages. In our case, we
translate information obtained from user scripts that shape the
topology to input for our different tools. We can thus share
a common information base among all participating tools
that is already prepopulated with all relevant information
concerning the topology.

-I E— JSON E— -I

Coordinator
(Service)

Intermediate
Representation

Topology Creator
(with topology script)

Fig. 2. Architecture of the testbed on mixed infrastructure. The coordinators
can run scripts with the intermediate representation as input to deploy
topologies to their respective target domain by using the hardware abstraction
layer from figure [T The coordinator from our testbed solution thus acts
as a service in our hardware abstraction layer. There can also be multiple
coordinators reading only a part of the intermediate representation. Due to
this also distributed architectures between multiple different parties/domains
are possible (after [5]).

Featuring the capabilities of our intermediate representation,
we created multiple tools to generate, modify, and deploy
topologies, thus providing an ecosystem of tools around our
network testbed solution. Additional advantages of the inter-
mediate representation are the feature to deploy infrastructure
from multiple different coordinators (they can share a subset of
the same configuration) and the ability to use version control
systems like git on the intermediate representation to advance
or roll back changes quickly. In figure[2] we outline our typical
deployment steps using coordinators from our testbed that
deploy functionality through coordinators that then, in turn,
use our hardware abstraction layer to deploy the functionality
to the servers and switches (see figure [I)).

The current tool to generate the intermediate representation
uses a topology definition similar to mininet or distrinet to
populate information. Tools using the intermediate representa-
tion as input currently include command line interfaces, deploy

Uhttps://github.com/p4lang/switch
Zhttps://sonicfoundation.dev/
3https://www.arubanetworks.com/
4https://www.pica8.com/picos-software/
Shttps://www.openvswitch.org/

https://github.com/p4lang/switch
https://sonicfoundation.dev/
https://www.arubanetworks.com/
https://www.pica8.com/picos-software/
https://www.openvswitch.org/

scripts, and a graphical user interface. Figure [3]shows a screen-
shot of this graphical user interface. Further details on our
vendor-independent hardware testbed solution can be found
in [5)]. It also includes further information about our above
claims for the advantages of our intermediate representation
and hardware independence.

RX testnode-eth2@host1 X RX testnode-eth5@host2 X

controllert

‘ testnode-eth1 ‘ Time)

testnode-eth0

host1 switch1 host2

testnode-eth2
testnode-eth3
testnode-ethd
testnode-eth5

Fig. 3. A screenshot from the graphical user interface of our testbed,
featuring a simple SDN topology with one controller, one switch and two
hosts connected to the switch. Additionally, two bandwidth measurements are
shown for ingress on the two hosts respectively.

III. DEMONSTRATION

This section will describe our demonstration at the venue
and the key points visitors will take away from it. In a live
demonstration, visitors will test a network-slicing solution we
built using our hardware abstraction layer and network testbed
solution on a hardware switching setup.

Our hardware setup will consist of one switch and two
servers out of our test setup shown in figure [as well as
a laptop to communicate with the servers and manage the
network testbed. One switch is enough to establish a commu-
nication channel between the laptop and a trusted server, while
the other malicious server can attack the connection between
them. The visitors can choose between two communication
channels to connect the laptop and the trusted server.

First, the visitors can create and attack an unprotected
channel. Before attacking it, communication through the chan-
nel will be healthy, with good bandwidth and packet loss
performance. Our graphical user interface displays both to the
visitors on a live updating plot. After beginning a flooding
attack with high traffic volume, the visitors will observe the
attack impact live via the same plots while being able to adapt
the attack to see how various intensities affect the setup. The
visitors will observe the degradation of the connection from
the live demo.

As a second case, the visitors can then establish a secure
network slice via our graphical user interface, which will then
be a protected and isolated communication channel. After-
ward, the visitors attack this slice again using the same method
as previously on the unprotected communication channel.
They will observe that the attack does not affect the network
slice, as opposed to the previous example. This showcases

the effectiveness of network slicing as a defense mechanism
against flooding attacks.

The demo thus highlights the importance of network slicing
solutions, their successful evaluation by our abstraction layer,
and the flexibility of softwarized networks leveraging SDN.

Monitor to provide User Interfaces
to manage the testbed

Input devices to interact with the testbed
2x OpenFlow-enabled edge switch

2x Server with 100Gbit NICs

3x P4-enabled core switch

Fig. 4. An image of our network testbed hardware setup, in this image
featuring a kubernetes cluster (visualized by OpenLens) and a switching setup
using SDN.

ACKNOWLEDGMENT

Funded in part by the German Research Foundation (DFG,
Deutsche Forschungsgemeinschaft) as part of Germany’s Ex-
cellence Strategy — EXC 2050/1 — Project ID 390696704 —
Cluster of Excellence “Centre for Tactile Internet with Human-
in-the-Loop” (CeTI) of Technische Universitit Dresden, the
Federal Ministry of Education and Research of Germany in
the programme of “Souverin. Digital. Vernetzt.” - Joint project
6G-life - project ID: 16KISKO01K and project Open6GHub
- project ID: 16KISKO010, and the Helmholtz Association
through the KASTEL Security Research Labs (HGF Topic
46.23).

REFERENCES

[1] D. Sattar and A. Matrawy, “Towards secure slicing: Using slice isolation
to mitigate ddos attacks on 5g core network slices,” in IEEE Conference
on Communications and Network Security (CNS), 2019.

[2] M. Karakus and A. Durresi, “Economic viability of software defined
networking (sdn),” Computer Networks, 2018.

[3] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[4] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti, and

C. Lac, “Distrinet: A mininet implementation for the cloud,” Computer

Communication Review, vol. 51, no. 1, 2021.

F. Windisch, K. Abedi, T. Doan, T. Strufe, and G. T. Nguyen, “Hybrid

testbed for security research in software-defined networks,” in IEEE

Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN), 2023.

[5

—

	Introduction
	Technology
	Demonstration
	References

